

Welcome to the s1ard documentation!

s1ard is a prototype processor to create the Sentinel-1 Analysis Ready Data (ARD) products
Normalised Radar Backscatter (S1-NRB) and Ocean Radar Backscatter (S1-ORB).
Further information about these products can be found
here [https://sentinel.esa.int/web/sentinel/sentinel-1-ard-normalised-radar-backscatter-nrb-product].

	General Topics
	Installation

	Usage

	ARD Production

	Scene Search

	Folder Structure

	Geolocation Accuracy

	Equivalent Number of Looks (ENL)

	API Documentation
	Configuration

	Processing

	Tile Extraction

	Ancillary Functions

	Scene Search

	Metadata

	Examples
	Exploring s1ard data cubes

	About
	Changelog

	Abbreviations

	References

	Indices and tables

General Topics

	Installation
	SNAP

	s1ard

	Docker

	Usage
	Configuration

	Command Line Interface

	ARD Production
	MGRS Gridding

	Scene Management

	DEM Handling

	OSV Handling

	SNAP Processing

	ARD Formatting

	Scene Search
	Intro

	Search configuration with config.ini

	Search with s1ard.search

	STAC search

	Basic scene search

	Folder Structure

	Geolocation Accuracy
	Limitations

	Development Status

	Equivalent Number of Looks (ENL)
	Calculate ENL per image

	Comparison between GRDH and NRB

Installation

SNAP

s1ard requires ESA’s Sentinels Application Platform (SNAP) software for SAR data processing.
Version 1.0.0 has been developed based on SNAP 8.
SNAP 9 is supported since version 1.0.2, SNAP 10 since version 1.7.0.
Downloaders for different operating systems can be obtained from the official webpage [https://step.esa.int/main/download/snap-download/].

The following code can be used to replicate the software installation on a Linux OS:

VERSION=10
TARGET=~/SNAP"$VERSION"

INSTALLER=esa-snap_sentinel_linux-"$VERSION".0.0.sh
wget https://download.esa.int/step/snap/"$VERSION"_0/installers/"$INSTALLER"
bash $INSTALLER -q -dir $TARGET
$TARGET/bin/snap --nosplash --nogui --modules --update-all

add SNAP location to the PATH environment variable in the .bashrc file
echo PATH=$PATH:$TARGET/snap/bin >> ~/.bashrc

See also the web page on how to update SNAP from the command line [https://senbox.atlassian.net/wiki/spaces/SNAP/pages/30539785/Update+SNAP+from+the+command+line].

Alternatively, updates for individual modules and versions can be downloaded in the SNAP Update Center [https://step.esa.int/updatecenter/].
The latest bundle that was used during release of version 1.0.0 is available here: https://step.esa.int/updatecenter/8.0_20220323-143356/.

s1ard

The s1ard package is not yet available via conda-forge or other common package distribution channels. For now,
the following shall provide a convenient installation option provided that Anaconda or Miniconda has been installed.

Latest State on Github

	Create and then activate the conda environment

conda env create --file https://raw.githubusercontent.com/SAR-ARD/s1ard/main/environment.yaml
conda activate s1ard

	Install the s1ard package into the environment

pip install git+https://github.com/SAR-ARD/s1ard.git

Specific Version

The package version can be changed as necessary. See the Tags [https://github.com/SAR-ARD/s1ard/tags] section of the
repository for available versions.

conda env create --file https://raw.githubusercontent.com/SAR-ARD/s1ard/v1.0.0/environment.yaml
conda activate s1ard
pip install git+https://github.com/SAR-ARD/s1ard.git@v1.0.0

Docker

Both SNAP and s1ard can also be installed into a docker container using the Dockerfile that is provided with the package.

Usage

This section outlines how to configure and run the processor. Configuration is most conveniently kept in a config.ini
configuration file but can also be modified via the command line.

Two different types of product were intended when developing the processor, Normalised Radar Backscatter (NRB)
and Ocean Radar Backscatter (ORB). However, the processor does not strictly separate between them and products can be created that
conform to both types.

To create an NRB product as defined by the CEOS ARD specification, the following configuration would be necessary:

mode = sar, nrb
measurement = gamma
annotation = dm, ei, em, id, lc, li, np, ratio

The generated backscatter is gamma nought RTC. Annotation layers are a data mask, ellipsoidal incident angle, elevation model,
acquisition id mask, local contributing area, local incidence angle, noise power and a gamma-sigma ratio.

For ORB, the following configuration is foreseen:

mode = sar, orb
measurement = sigma
annotation = dm, id, ld, li, np, wm

Compared to NRB, the backscatter is now sigma nought RTC. The ellipsoidal incident angle is excluded because over ocean
it is nearly identical to the local incident angle. Furthermore, the elevation model, local contributing area and
backscatter ratio are excluded as they are not seen as necessary.
Two new annotation layers are added. A look direction angle and a wind model.

See below for further details.

Configuration

Usage of the s1ard package relies on a configuration file that needs to be set up by the user. The configuration
file follows the INI format, which uses plain text to store properties as key-value pairs. INI files can be created and
opened with any text editor. An example config.ini file for the s1ard package can be found here:

https://github.com/SAR-ARD/s1ard/blob/main/config.ini

Configuration files in INI format can have different sections. Each section begins at a section name and ends at the next
section name. The config.ini file used with the s1ard package should at least have a dedicated section for processing
related parameters. This section is by default named [PROCESSING].
Users might create several processing sections in the same configuration file with parameter values that correspond to different
processing scenarios (e.g., for different areas of interest). Note that each section must contain all necessary
configuration parameters even if only a few are varied between the sections.

The following provides an overview of the parameters the config.ini should contain and anything that should be
considered when selecting their values:

Processing Section

mode

Options: sar | nrb | orb

This parameter determines what steps should be executed.
sar will only start SAR preprocessing, whereas nrb and orb will only start ARD generation from existing SAR
products preprocessed in sar.
By defining both sar and one of the ARD modes as list, both SAR preprocessing and ARD generation can be run together:

mode = sar, nrb

scene

Define a single SAR scene filename instead of searching for scenes in a database.
If this parameter is set, the ‘mode’ must be ‘sar’.
In case of a GRD, database search is still performed to collect neighbors.

aoi_tiles & aoi_geometry

Limit processing to a specific area of interest (AOI).

aoi_tiles can be used to define the area of interest via MGRS tile IDs, which must be provided comma-separated (e.g.,
aoi_tiles = 32TNS, 32TMT, 32TMS). aoi_geometry defines the area of interest via a full path to a vector file
supported by spatialist.vector.Vector [https://spatialist.readthedocs.io/en/latest/spatialist.html#spatialist.vector.Vector]. This option will automatically search for overlapping MGRS tiles and use
these for processing.
Both parameters are optional and can be set to None or left empty. aoi_tiles overrides aoi_geometry.
If neither is defined, all tiles overlapping with the scene search result are processed.

mindate & maxdate

Search for source scenes within the defined date range.
Allowed are all string representations that can be parsed by dateutil.parser.parse() [https://dateutil.readthedocs.io/en/stable/parser.html#dateutil.parser.parse].

date_strict

Treat dates as strict limits or also allow flexible limits to incorporate scenes
whose acquisition period overlaps with the defined limit.

	strict: start >= mindate & stop <= maxdate

	not strict: stop >= mindate & start <= maxdate

sensor

Options: S1A | S1B

The Sentinel-1 sensor/platform.

acq_mode

Options: IW | EW | SM

The acquisition mode of the source scenes that should be processed.

product

Options: GRD | SLC

The product of the source scenes that should be processed.

datatake

The datatake ID of source scenes in hexadecimal representation, e.g. 04EBF7.

work_dir

work_dir is the main directory in which any subdirectories and files are stored that are generated during processing.
Needs to be provided as full path to an existing directory.

tmp_dir, sar_dir, ard_dir, wbm_dir & log_dir

Processing creates many intermediate files that are expected to be stored in separate subdirectories. The
default values provided in the example configuration file linked above are recommended and will automatically create
subdirectories relative to the directory specified with work_dir. E.g., ard_dir = ARD will create the subdirectory
/<work_dir>/ARD. Optionally, full paths to existing directories can be provided for all of these parameters.

search option I: scene_dir & db_file

Metadata of any Sentinel-1 scene found in scene_dir will be stored in an SQLite database file created by pyrosar.drivers.Archive.
With db_file either a full path to an existing database can be provided or it will be created in work_dir if only
a filename is provided. E.g., db_file = scenes.db will automatically create the database file /<work_dir>/scenes.db.
scene_dir needs to be provided as full path to an existing directory and will be searched recursively for any Sentinel-1
scenes using the regular expression '^S1[AB].*(SAFE|zip)$'.

search option II: stac_catalog & stac_collections

Alternative to searching scenes in a directory and storing their metadata in an SQLite database, scenes can be queried from a STAC catalog.
For this, a STAC URL and one or many collections can be defined with stac_catalog and stac_collections respectively.
The scenes are expected to be locally accessible in unpacked folders with the .SAFE extension.

kml_file

The Sentinel-2 Military Grid Reference System (MGRS) tiling system establishes the basis of the processing chain and a
local reference file containing the respective tile information for processing ARD products is needed. The official
KML file defined for the Sentinel-2 mission provided by ESA can be retrieved here [https://sentinel.esa.int/documents/247904/1955685/S2A_OPER_GIP_TILPAR_MPC__20151209T095117_V20150622T000000_21000101T000000_B00.kml].
With the kml_file parameter either a full path to this reference file can be provided or it is expected to be located
in the directory provided with work_dir if only a filename is provided. E.g., the processor expects to find
/<work_dir>/s2_grid.kml if kml_file = s2_grid.kml.

dem_type

Options: Copernicus 10m EEA DEM | Copernicus 30m Global DEM II | Copernicus 30m Global DEM | GETASSE30

The Digital Elevation Model (DEM) that should be used for processing.

Note that water body masks are not available for “GETASSE30”, and will therefore not be
included in the product data mask. “Copernicus 10m EEA DEM” and “Copernicus 30m Global DEM II” (both include water body masks)
are retrieved from the Copernicus Space Component Data Access system (CSCDA) [https://spacedata.copernicus.eu/web/cscda/data-access/registration],
which requires authentication. The processor reads username and password from the environment variables DEM_USER
and DEM_PASS if possible and otherwise interactively asks for authentication if one of these DEM options is selected.

gdal_threads

Temporarily changes GDAL_NUM_THREADS during processing. Will be reset after processing has finished.

measurement

Options: gamma | sigma

The backscatter measurement convention. Either creates gamma naught RTC (\(\gamma^0_T\)) or sigma naught RTC (\(\sigma^0_T\)) backscatter.

annotation

A comma-separated list to define the annotation layers to be created for each ARD product.
Supported options:

	dm: data mask (six masks: not layover not shadow, layover, shadow, ocean, lakes, rivers)

	ei: ellipsoidal incident angle (needed for computing geolocation accuracy)

	em: digital elevation model

	id: acquisition ID image (source scene ID per pixel)

	lc: RTC local contributing area

	ld: range look direction angle

	li: local incident angle

	np: noise power (NESZ, per polarization)

	ratio: will automatically be replaced with the following, depending on selected measurement:

	gs: gamma-sigma ratio: sigma0 RTC / gamma0 RTC (if measurement = gamma)

	sg: sigma-gamma ratio: gamma0 RTC / sigma0 RTC (if measurement = sigma)

	wm: wind-modelled backscatter extracted from a Sentinel-1 OCN (ocean) product.
The sub-product owiNrcsCmod is extracted, which is Ocean Wind (OWI) Normalised
Radar Cross Section (NRCS) predicted using a CMOD model and ECMWF wind model data.
For each OCN product, a Level-1 counterpart (SLC/GRD) exists.
The OCN products and corresponding Level-1 products must be searchable in the same way
via the two search options described above.
If a sigma naught output layer exists (via measurement = sigma or annotation layer ratio),
a co-polarization wind normalization ratio VRT is created by dividing the measurement by the
wind-modelled backscatter.

Use one of the following to create no annotation layer:

	annotation =

	annotation = None

etad & etad_dir

Determines if the Extended Timing Annotation Dataset (ETAD) correction [https://sentinel.esa.int/web/sentinel/missions/sentinel-1/data-products/etad-dataset]
should be performed or not. If etad=True, etad_dir is searched for ETAD products matching the respective input SLC
and a new SLC is created in tmp_dir, which is then used for all other processing steps. If etad=False, etad_dir
will be ignored.

Metadata Section

format

A comma-separated list to define the metadata file formats to be created for each ARD product.
Supported options:

	OGC: XML file according to OGC EO [https://docs.ogc.org/is/10-157r4/10-157r4.html] standard

	STAC: JSON file according to the SpatioTemporal Asset Catalog [https://github.com/radiantearth/stac-spec/] family of specifications

copy_original

Copy the original metadata of the source scene(s) into the ARD product directory?
This will copy the manifest.safe file and annotation folder into the subdirectory: /source/<ProductIdentifier>.

access_url, licence, doi & processing_center

The metadata files created for each ARD product contain some fields that should not be hidden away and hardcoded with
arbitrary values. Instead, they can be accessed here in order to more easily generate a complete set of metadata. These
fields are mostly relevant if you want to produce ARD products systematically and make them available for others.
If you don’t see a need for them you can just leave the fields empty, use the default ‘None’ or delete this entire section.

Command Line Interface

Once a configuration file has been created and all of its parameters have been properly defined, it can be used to start
the processor using the command line interface (CLI) tool provided with the s1ard package.

The following options are currently available.

Print a help message for the CLI tool:

s1ard --help

Print the processor version:

s1ard --version

Start the processor using parameters defined in the default section of a config.ini file:

s1ard -c /path/to/config.ini

Start the processor using parameters defined in section SECTION_NAME of a config.ini file:

s1ard -c /path/to/config.ini -s SECTION_NAME

Start the processor using parameters defined in the default section of a config.ini file but
override some parameters, e.g. acq_mode and annotation:

s1ard -c /path/to/config.ini --acq_mode IW --annotation dm,id

The argument snap_gpt_args is known to require an additional modification so that the - characters in the value are not mistaken for argument keys.
In the example SNAP is instructed to use a maximum of 32GB memory, 20GB cache size and 16 threads.

s1ard -c /path/to/config.ini -- --snap_gpt_args "-J-Xmx32G -c 20G -x -q 16"

ARD Production

The following sections give a brief overview of the major components of creating a S1-NRB product.
All steps are comprised in function s1ard.processor.main().
The pyroSAR package builds the foundation of the processor and its documentation is used to outline the processor details to conveniently link to all relevant functionality.

MGRS Gridding

The basis of the processing chain builds the Sentinel-2 Military Grid Reference System (MGRS) tiling system.
Hence, a reference file is needed containing the respective tile information for processing S1-NRB products.
A KML file is available online that will be used in the following steps:

S2A_OPER_GIP_TILPAR_MPC__20151209T095117_V20150622T000000_21000101T000000_B00.kml [https://sentinel.esa.int/documents/247904/1955685/S2A_OPER_GIP_TILPAR_MPC__20151209T095117_V20150622T000000_21000101T000000_B00.kml]

This file contains all relevant information about individual tiles, in particular the EPSG code of the respective UTM zone and the geometry of the tile in UTM coordinates.
The function s1ard.tile_extraction.aoi_from_tile() can be used to extract one or multiple tiles as spatialist.vector.Vector [https://spatialist.readthedocs.io/en/latest/spatialist.html#spatialist.vector.Vector] object.

Scene Management

The S1 images are managed in a local SQLite database to select scenes for processing (see pyroSAR’s section on Database Handling [https://pyrosar.readthedocs.io/en/latest/general/processing.html#database-handling]) or are directly queried from a STAC catalog (see s1ard.archive.STACArchive).
See documentation section Scene Search for details.

After loading an MGRS tile as an spatialist.vector.Vector [https://spatialist.readthedocs.io/en/latest/spatialist.html#spatialist.vector.Vector] object and selecting all relevant overlapping scenes
from the database, processing can commence.

DEM Handling

s1ard offers a convenience function s1ard.dem.mosaic() for creating scene-specific DEM files from various sources.
The function is based on pyroSAR.auxdata.dem_autoload() [https://pyrosar.readthedocs.io/en/latest/api/auxdata.html#pyroSAR.auxdata.dem_autoload] and pyroSAR.auxdata.dem_create() [https://pyrosar.readthedocs.io/en/latest/api/auxdata.html#pyroSAR.auxdata.dem_create] and will

	download all tiles of the selected source overlapping with a defined geometry

	create a GDAL VRT virtual mosaic from the tiles including gap filling over ocean areas

	create a new GeoTIFF from the VRT including geoid-ellipsoid height conversion if necessary
(WGS84 heights are generally required for SAR processing but provided heights might be relative to a geoid like EGM2008).

OSV Handling

Sentinel-1 orbit state vector files (OSV) for enhancing the orbit location accuracy are downloaded directly by pyroSAR (see pyroSAR.S1.OSV [https://pyrosar.readthedocs.io/en/latest/api/sentinel-1.html#pyroSAR.S1.OSV]), but can also be downloaded automatically by SNAP.
For S1-NRB processing at least Restituted Orbit files (RESORB) are needed while the more accurate Precise Orbit Ephemerides (POEORB) delivered two weeks after scene acquisition do not provide much additional benefit.

SNAP Processing

The central function for processing backscatter data with SNAP is s1ard.snap.process(). It will perform all necessary steps to
generate radiometrically terrain corrected gamma/sigma naught backscatter plus all relevant additional datasets like
local incident angle and local contribution area (see argument export_extra).
In a full processor run, the following functions are called in sequence:

	s1ard.snap.pre(): general pre-processing including

	Orbit state vector enhancement

	(GRD only) border noise removal

	Calibration to beta naught (for RTC) and sigma naught (for NESZ)

	Thermal noise removal (including generation of noise equivalent sigma zero (NESZ) noise power images)

	(SLC only) debursting and swath merging

	s1ard.snap.mli(): creates multi-looked image files (MLIs) per polarization if the target pixel spacing is larger than the source pixel spacing.

	s1ard.snap.rtc(): radiometric terrain flattening.
Output is backscatter in gamma naught RTC (\(\gamma^0_T\)) and sigma naught RTC (\(\sigma^0_T\)) as well as the scattering area (\(\beta^0 / \gamma^0_T\)).

	s1ard.snap.gsr(): computation of the gamma-sigma ratio (\(\sigma^0_T / \gamma^0_T\)).

	s1ard.snap.geo(): geocoding. This function may be called multiple times if the scene overlaps with multiple UTM zones.

The output is a BEAM-DIMAP product which consists of a dim metadata file and a data folder containing the individual image layers in ENVI format (extension img).
The function s1ard.snap.find_datasets() can be used to collect the individual images files for a scene.

Depending on the user configuration parameters measurement and annotation, some modifications to the workflow above are possible:

	s1ard.snap.gsr() may be replaced by s1ard.snap.sgr() to create a sigma-gamma ratio (\(\gamma^0_T / \sigma^0_T\))

ARD Formatting

During SAR processing, files covering a whole scene are created. In this last step, the scene-based structure is converted to the MGRS tile structure.
If one tile overlaps with multiple scenes, these scenes are first virtually mosaiced using VRT files.
The files are then subsetted to the actual tile extent, converted to Cloud Optimized GeoTIFFs (COG), and renamed to the S1-NRB or S1-ORB naming scheme.
All steps are performed by s1ard.nrb.format().
The actual file format conversion is done with spatialist.auxil.gdalwarp() [https://spatialist.readthedocs.io/en/latest/spatialist.html#spatialist.auxil.gdalwarp], which is a simple wrapper around the gdalwarp utility of GDAL.
The following is an incomplete code example highlighting the general procedure of converting the individual images.
The outfile name is generated from information of the source images, the MGRS tile ID and the name of the respective file of the SAR processing step.

from spatialist import gdalwarp, Raster
from osgeo import gdal

write_options = ['BLOCKSIZE=512',
 'COMPRESS=LERC_ZSTD',
 'MAX_Z_ERROR=0.001']

with Raster(infiles, list_separate=False) as ras:
 source = ras.filename

gdalwarp(src=source, dst=outfile,
 options={'format': 'COG',
 'outputBounds': [xmin, ymin, xmax, ymax],
 'creationOptions': write_options})

After all COG files have been created, GDAL VRT files are written for log scaling and conversion to other backscatter conventions using function s1ard.nrb.create_vrt().
The code below demonstrates the generation of a VRT file for log-scaling using spatialist.auxil.gdalbuildvrt() [https://spatialist.readthedocs.io/en/latest/spatialist.html#spatialist.auxil.gdalbuildvrt] followed by an XML
modification to insert the pixel function (a way to achieve this with GDAL’s gdalbuildvrt functionality has not yet been found).

from lxml import etree
from spatialist import gdalbuildvrt

src = 'test.tif'
dst = 'test_db.vrt'

gdalbuildvrt(src=src, dst=dst)
tree = etree.parse(dst)
root = tree.getroot()
band = tree.find('VRTRasterBand')
band.attrib['subClass'] = 'VRTDerivedRasterBand'
pixfun = etree.SubElement(band, 'PixelFunctionType')
pixfun.text = 'dB'
arg = etree.SubElement(band, 'PixelFunctionArguments')
arg.attrib['fact'] = '10'
etree.indent(root)
tree.write(dst, pretty_print=True, xml_declaration=False, encoding='utf-8')

In a last step the OGC XML and STAC JSON metadata files will be written for the S1-NRB product.

Scene Search

Intro

Scene search is a central component of the s1ard package.
The Level-1 SLC/GRD source scenes and the ARD products are in a many-to-many relationship.
One source scene is covered by multiple ARD products and an individual ARD product will in most cases be covered by two source scenes (see Figure 1).

[image: Figure 1: geometry comparison.]

Figure 1: Comparison of one central source scene (red), all tiles covering this scene in two different UTM zones (blue, purple), and two neighboring scenes needed for full coverage of all displayed tiles (yellow).

Hence, the processor must ensure that all source scenes relevant for a number of ARD products are processed.
First, all locally available scenes are searched (see config.ini search options).
Then, a check is performed to ensure all scenes were actually found by checking the data take ID.
If the processor suspects a missing scene, it will cross-check with the ASF portal whether the scene is indeed missing.
See s1ard.search.check_acquisition_completeness().

Just providing a single scene to the processor is possible with the scene parameter, but this is only supported for mode=sar.
For the ARD modes, multiple scenes are needed and the processor will need to collect them via the defined search method and parameters.

Search configuration with config.ini

For Figure 1 we assume the following scene as the central one:

S1A_IW_GRDH_1SDV_20180829T170656_20180829T170721_023464_028DE0_F7BD

The following configuration in the config.ini file will select this central scene and its neighbors from the database and create 12 ARD products (as long as no geometry is defined via aoi_tiles or aoi_geometry).
The search parameters match the acquisition characteristics of the scene.
With date_strict we ensure that only scenes that were completely acquired in the defined time range are considered (i.e. not any earlier or later).

mindate = 20180829T170656
maxdate = 20180829T170721
date_strict = True
sensor = S1A
acq_mode = IW
product = GRD
scene_dir = path/to/scenes
db_file = scenes.db

Search with s1ard.search

In the background the s1ard.search module is used to do the scene search.
This module contains various tools for searching Sentinel-1 scenes from multiple sources.

For the scene search option above (via scene_dir and db_file), the function s1ard.search.scene_select() and class pyroSAR.drivers.Archive [https://pyrosar.readthedocs.io/en/latest/api/drivers.html#pyroSAR.drivers.Archive] are used for finding this scene and its neighbors:

from s1ard.search import scene_select
from pyroSAR.drivers import Archive
from spatialist.ancillary import finder

SQLite database used for search
db_file = 'scenes.db'

a folder containing Sentinel-1 scenes
scene_dir = '/path/to/scenes'

KML file from the Sentinel-2 mission containing the MGRS tile geometries
kml_file = 'S2A_OPER_GIP_TILPAR_MPC__20151209T095117_V20150622T000000_21000101T000000_B00.kml'

find the Sentinel-1 scenes in the defined folder
scenes = finder(target=scene_dir, matchlist=['S1*.zip'])

create/open the database file
with Archive(dbfile=db_file) as archive:
 # insert the found scenes into the database
 archive.insert(scenes)
 # search for scenes and overlapping MGRS tiles matching the defined parameters
 selection, aoi_tiles = scene_select(archive=archive, kml_file=kml_file,
 sensor='S1A', acquisition_mode='IW',
 product='GRD', mindate='20180829T170656',
 maxdate='20180829T170721', date_strict=True)
print('\n'.join(selection))
print(aoi_tiles)

This will output the three scenes and the 12 tiles displayed above:

/path/to/scenes/S1A_IW_GRDH_1SDV_20180829T170631_20180829T170656_023464_028DE0_9F36.zip
/path/to/scenes/S1A_IW_GRDH_1SDV_20180829T170656_20180829T170721_023464_028DE0_F7BD.zip
/path/to/scenes/S1A_IW_GRDH_1SDV_20180829T170721_20180829T170746_023464_028DE0_5310.zip
['32TNR', '32TNS', '32TNT', '32TPR', '32TPS', '32TPT', '32TQR', '32TQS', '32TQT', '33TUL', '33TUM', '33TUN']

STAC search

Note

For full STAC search, the scenes need to exist in the local file system (i.e. not via e.g. HTTPS).

The shown examples can only be reproduced on DLR’s terrabyte [https://docs.terrabyte.lrz.de] platform.

Similarly, scene search can be conducted using STAC.
In the config.ini, the parameters scene_dir and db_file need to be replaced with stac_catalog and stac_collections:

stac_catalog = https://stac.terrabyte.lrz.de/public/api
stac_collections = sentinel-1-grd

Internally, the search interface class s1ard.search.STACArchive is used instead of pyroSAR.drivers.Archive [https://pyrosar.readthedocs.io/en/latest/api/drivers.html#pyroSAR.drivers.Archive] as in the example above:

from s1ard.search import STACArchive

stac_catalog = 'https://stac.terrabyte.lrz.de/public/api'
stac_collection = 'sentinel-1-grd'

with STACArchive(url=stac_catalog, collections=stac_collection) as archive:
 selection, aoi_tiles = scene_select(archive=archive, ...

Basic scene search

Simple scene search (without selecting neighbors and MGRS tiles) can be done with the select methods of the respective driver classes.

pyroSAR

See pyroSAR.drivers.Archive.select() [https://pyrosar.readthedocs.io/en/latest/api/drivers.html#pyroSAR.drivers.Archive.select].

from pyroSAR.drivers import Archive

db_file = 'scenes.db'
scene_dir = '/path/to/scenes'

with Archive(dbfile=db_file) as archive:
 selection = archive.select(sensor='S1A', acquisition_mode='IW',
 product='GRD', mindate='20180829T170656',
 maxdate='20180829T170721', date_strict=True)
print('\n'.join(selection))

STAC

See s1ard.search.STACArchive.select().

Note

maxdate is increased by one second because the STAC catalog time stamp is more precise than the defined one and 2018-08-29T17:07:21Z < 2018-08-29T17:07:21.014592Z.

check_exist=False is defined to not check the existence of the scene in the local file system.

from s1ard.search import STACArchive

stac_catalog = 'https://stac.terrabyte.lrz.de/public/api'
stac_collection = 'sentinel-1-grd'

with STACArchive(url=stac_catalog, collections=stac_collection) as archive:
 selection = archive.select(sensor='S1A', acquisition_mode='IW',
 product='GRD', mindate='20180829T170656',
 maxdate='20180829T170722', date_strict=True,
 check_exist=False)
print('\n'.join(selection))

ASF

See s1ard.search.ASFArchive.select().

from s1ard.search import ASFArchive

with ASFArchive() as archive:
 selection = archive.select(sensor='S1A', acquisition_mode='IW',
 product='GRD', mindate='20180829T170656',
 maxdate='20180829T170722', date_strict=True)
print('\n'.join(selection))

Folder Structure

The following demonstrates a possible structure created to store intermediate and final files during a processor run.
The listed files describe the output of the user configuration parameter measurement set to gamma
and the following output annotation layers enabled annotation = dm, ei, em, id, lc, li, np, ratio, thus creating S1-NRB products.
The structure is based on the default configuration defined in the config.ini file and can be modified by a user.
Folders are highlighted in bold.

 Geolocation Accuracy

Geolocation Accuracy

Item 4.3 of the CARD4L NRB specification requires, as minimum, an estimate of the absolute location error (ALE) “as
bias and standard deviation, provided in slant range/azimuth, or Northing/Easting” [3]. As desired target the accuracy
is less or equal 0.1 pixels radial root mean square error (rRMSE), which can be defined as:

\[RMSE_{planar} = \sqrt{RMSE_{SLC,Az}^2 + (\frac{RMSE_{SLC,Rg}}{sin(\theta_{i,min})})^2 + RMSE_{DEM,planar}^2 + RMSE_{proc}^2}\]

The error induced by the DEM can be described as:

\[RMSE_{DEM,planar} = \frac{\sigma_{DEM}}{tan(\theta_{i,min})}\]

where

\(\theta_{i,min}\) = The minimum possible angle of incidence

\(RMSE_{SLC,Az/Rg}\) = Error induced by SLC source data in azimuth/range

\(RMSE_{DEM,planar}\) = Error induced by DEM inaccuracy

\(RMSE_{proc}\) = Error induced by other processing steps

\(\sigma_{DEM}\) = DEM accuracy at \(1\sigma\) (LE68)

Limitations

Currently, the following simplifications need to be considered for the calculation of rRMSE values found in the metadata
of each S1-NRB product:

	Processing induced errors (\(RMSE_{proc}\)) and the error term related to DEM interpolation are not further considered and assumed to be 0.

	The DEM accuracy (\(\sigma_{DEM}\)) is estimated on the global mean accuracy LE90 reported for the COP-DEM [1] under the assumption of gaussian distribution:

	Global: LE90 = 2.57; LE68 \(\approx\) 1.56

	rRMSE is only calculated if a COP-DEM was used for processing, otherwise the value is set to None

Development Status

The development status is tracked and discussed in the following Github issue: https://github.com/SAR-ARD/s1ard/issues/33

 Equivalent Number of Looks (ENL)

Equivalent Number of Looks (ENL)

The Equivalent Number of Looks (ENL) describes the degree of averaging applied to SAR measurements during data formation
and postprocessing and is an indirect measure of speckle reduction (e.g., due to multilooking or speckle filtering).

In case of linear scaled backscatter data, ENL can be calculated as:

\[ENL = \frac{\mu^2}{\sigma^2}\]

where \(\mu\) is the mean and \(\sigma\) is the standard deviation of the image. ([4], section A1.1.7)

The ENL value stored in the metadata of each S1-NRB product is calculated as suggested in [2], where ENL is first
calculated for small pixel windows over the cross-polarized backscatter image and afterwards the median value of
the distribution is selected.

Calculate ENL per image

While only the median value is currently stored in the metadata of each S1-NRB product, it is possible to calculate ENL
as described above for entire images using the function s1ard.metadata.extract.calc_enl(). The following code
example shows how to calculate ENL for 25x25 pixel windows and return the result as a numpy array. The visualization of
the resulting array is shown in Figure 1.

from s1ard.metadata.extract import calc_enl

tif = "s1a-iw-nrb-20220721t051225-044194-05465e-33tuf-vh-s-lin.tif"
enl_arr = calc_enl(tif=tif, block_size=25, return_arr=True)

[image: Figure 1: Visualized ENL array for a S1-NRB product.]

Figure 1: Visualized ENL array for a S1-NRB product processed from a Sentinel-1A SLC scene in IW mode for MGRS tile 33TUF
(coastline between Rome and Naples, Italy).

Comparison between GRDH and NRB

[4] provides estimates of ENL for different Sentinel-1 products (average over all swaths), e.g. ENL of 4.4 for GRDH in
IW mode, and a description of the estimation process in section D1. The following shows a simple comparison between the
GRDH product:

S1A_IW_GRDH_1SDV_20220721T051222_20220721T051247_044194_05465E_5807

and a S1-NRB product derived from the equivalent SLC product and processed for MGRS tile 33TUF:

S1A_IW_SLC__1SDV_20220721T051221_20220721T051249_044194_05465E_BACD

ENL was calculated for a selection of homogeneous forest areas, which are highlighted in Figure 2. The green outline
traces the north-western corner of MGRS tile 33TUF (see Fig. 1). The resulting scatter plot (Figure 3) shows
consistently higher ENL values for the GRDH product (Avg. ENL: 4.81) in comparison to the S1-NRB product (Avg. ENL: 4.59).

[image: Figure 2: Selection of homogeneous forest areas for ENL comparison between GRDH and NRB.]

Figure 2: Selection of homogeneous forest areas for ENL comparison between GRDH and NRB. Green outline: North-western
corner of MGRS tile 33TUF; Background image: VH backscatter of the GRDH product.

[image: Figure 3: Scatter plot comparing ENL values between GRDH and NRB, calculated for selected areas (see Fig. 2).]

Figure 3: Scatter plot comparing ENL values between GRDH and NRB, calculated for selected areas (see Fig. 2).

 API Documentation

API Documentation

Configuration

	gdal_conf

	Stores GDAL configuration options for the current process.

	snap_conf

	Returns a dictionary of additional parameters for s1ard.snap.process() based on processing configurations provided by the config file.

	get_config

	Returns the content of a config.ini file as a dictionary.

	
s1ard.config.gdal_conf(config)

	Stores GDAL configuration options for the current process.

	Parameters:

	config (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary of the parsed config parameters for the current process.

	Returns:

	Dictionary containing GDAL configuration options for the current process.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
s1ard.config.get_config(config_file, proc_section='PROCESSING', **kwargs)

	Returns the content of a config.ini file as a dictionary.

	Parameters:

	
	config_file (str [https://docs.python.org/3/library/stdtypes.html#str]) – Full path to the config file that should be parsed to a dictionary.

	proc_section (str [https://docs.python.org/3/library/stdtypes.html#str]) – Section of the config file that processing parameters should be parsed from. Default is ‘PROCESSING’.

	Returns:

	out_dict – Dictionary of the parsed config parameters.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
s1ard.config.get_keys(section)

	get all allowed configuration keys

	Parameters:

	section ({'processing', 'metadata'}) – the configuration section to get the allowed keys for.

	Returns:

	a list of keys

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]

	
s1ard.config.snap_conf(config)

	Returns a dictionary of additional parameters for s1ard.snap.process() based on processing
configurations provided by the config file.

	Parameters:

	config (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary of the parsed config parameters for the current process.

	Returns:

	Dictionary of parameters that can be passed to s1ard.snap.process()

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

Processing

	main

	Main function that initiates and controls the processing workflow.

	
s1ard.processor.main(config_file, section_name='PROCESSING', debug=False, **kwargs)

	Main function that initiates and controls the processing workflow.

	Parameters:

	
	config_file (str [https://docs.python.org/3/library/stdtypes.html#str]) – Full path to a config.ini file.

	section_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Section name of the config.ini file that processing parameters
should be parsed from. Default is ‘PROCESSING’.

	debug (bool [https://docs.python.org/3/library/functions.html#bool]) – Set pyroSAR logging level to DEBUG? Default is False.

	**kwargs – extra arguments to override parameters in the config file. E.g. acq_mode.

SNAP

core processing

	process

	Main function for SAR processing with SNAP.

	geo

	Range-Doppler geocoding.

	grd_buffer

	GRD extent buffering.

	gsr

	Gamma-sigma ratio computation for either ellipsoidal or RTC sigma nought.

	mli

	Multi-looking.

	pre

	General SAR preprocessing.

	rtc

	Radiometric Terrain Flattening.

	sgr

	Sigma-gamma ratio computation.

	look_direction

	Compute the per-pixel range look direction angle.

ancillary functions

	find_datasets

	Find processed datasets for a scene in a certain Coordinate Reference System (CRS).

	get_metadata

	Get processing metadata needed for ARD product metadata.

	postprocess

	Performs edge cleaning and sets the nodata value in the output ENVI HDR files.

	nrt_slice_num

	Compute a slice number for a scene acquired NRT Slicing mode.

	
s1ard.snap.find_datasets(scene, outdir, epsg)

	Find processed datasets for a scene in a certain Coordinate Reference System (CRS).

	Parameters:

	
	scene (str [https://docs.python.org/3/library/stdtypes.html#str]) – the file name of the SAR scene

	outdir (str [https://docs.python.org/3/library/stdtypes.html#str]) – the output directory in which to search for results

	epsg (int [https://docs.python.org/3/library/functions.html#int]) – the EPSG code defining the output projection of the processed scenes.

	Returns:

	Either None if no datasets were found or a dictionary with the
following keys and values pointing to the file names
(polarization-specific keys depending on product availability):

	hh-g-lin: gamma nought RTC backscatter HH polarization

	hv-g-lin: gamma nought RTC backscatter HV polarization

	vh-g-lin: gamma nought RTC backscatter VH polarization

	vv-g-lin: gamma nought RTC backscatter VV polarization

	hh-s-lin: sigma nought ellipsoidal backscatter HH polarization

	hv-s-lin: sigma nought ellipsoidal backscatter HV polarization

	vh-s-lin: sigma nought ellipsoidal backscatter VH polarization

	vv-s-lin: sigma nought ellipsoidal backscatter VV polarization

	dm: layover-shadow data mask

	ei: ellipsoidal incident angle

	gs: gamma-sigma ratio

	lc: local contributing area (aka scattering area)

	ld: range look direction angle

	li: local incident angle

	sg: sigma-gamma ratio

	np-hh: NESZ HH polarization

	np-hv: NESZ HV polarization

	np-vh: NESZ VH polarization

	np-vv: NESZ VV polarization

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict] or None

	
s1ard.snap.geo(*src, dst, workflow, spacing, crs, geometry=None, buffer=0.01, export_extra=None, standard_grid_origin_x=0, standard_grid_origin_y=0, dem, dem_resampling_method='BILINEAR_INTERPOLATION', img_resampling_method='BILINEAR_INTERPOLATION', gpt_args=None, **bands)

	Range-Doppler geocoding.

	Parameters:

	
	src (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str] or None]) – variable number of input scene file names

	dst (str [https://docs.python.org/3/library/stdtypes.html#str]) – the file name of the target scene. Format is BEAM-DIMAP.

	workflow (str [https://docs.python.org/3/library/stdtypes.html#str]) – the target XML workflow file name

	spacing (int [https://docs.python.org/3/library/functions.html#int] or float [https://docs.python.org/3/library/functions.html#float]) – the target pixel spacing in meters

	crs (int [https://docs.python.org/3/library/functions.html#int] or str [https://docs.python.org/3/library/stdtypes.html#str]) – the target coordinate reference system

	geometry (dict [https://docs.python.org/3/library/stdtypes.html#dict] or spatialist.vector.Vector [https://spatialist.readthedocs.io/en/latest/spatialist.html#spatialist.vector.Vector] or str [https://docs.python.org/3/library/stdtypes.html#str] or None) – a vector geometry to limit the target product’s extent

	buffer (int [https://docs.python.org/3/library/functions.html#int] or float [https://docs.python.org/3/library/functions.html#float]) – an additional buffer in degrees to add around geometry

	export_extra (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]] or None) – a list of ancillary layers to write. Supported options:

	DEM

	incidenceAngleFromEllipsoid

	layoverShadowMask

	localIncidenceAngle

	projectedLocalIncidenceAngle

	standard_grid_origin_x (int [https://docs.python.org/3/library/functions.html#int] or float [https://docs.python.org/3/library/functions.html#float]) – the X coordinate for pixel alignment

	standard_grid_origin_y (int [https://docs.python.org/3/library/functions.html#int] or float [https://docs.python.org/3/library/functions.html#float]) – the Y coordinate for pixel alignment

	dem (str [https://docs.python.org/3/library/stdtypes.html#str]) – the DEM file

	dem_resampling_method (str [https://docs.python.org/3/library/stdtypes.html#str]) – the DEM resampling method

	img_resampling_method (str [https://docs.python.org/3/library/stdtypes.html#str]) – the SAR image resampling method

	gpt_args (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]] or None) – a list of additional arguments to be passed to the gpt call

	e.g. ['-x', '-c', '2048M'] for increased tile cache size and intermediate clearing

	bands – band ids for the input scenes in src as lists with keys bands<index>,
e.g., bands1=['NESZ_VV'], bands2=['Gamma0_VV'], ...

See also

pyroSAR.snap.auxil.sub_parametrize [https://pyrosar.readthedocs.io/en/latest/api/snap.html#pyroSAR.snap.auxil.sub_parametrize], pyroSAR.snap.auxil.geo_parametrize [https://pyrosar.readthedocs.io/en/latest/api/snap.html#pyroSAR.snap.auxil.geo_parametrize]

	
s1ard.snap.get_metadata(scene, outdir)

	Get processing metadata needed for ARD product metadata.

	Parameters:

	
	scene (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the SAR scene

	outdir (str [https://docs.python.org/3/library/stdtypes.html#str]) – the directory to search for processing output

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
s1ard.snap.grd_buffer(src, dst, workflow, neighbors, buffer=100, gpt_args=None)

	GRD extent buffering.
GRDs, unlike SLCs, do not overlap in azimuth.
With this function, a GRD can be buffered using the neighboring acquisitions.
First, all images are mosaicked using the SliceAssembly operator
and then subsetted to the extent of the main scene including a buffer.

	Parameters:

	
	src (str [https://docs.python.org/3/library/stdtypes.html#str]) – the file name of the source scene in BEAM-DIMAP format.

	dst (str [https://docs.python.org/3/library/stdtypes.html#str]) – the file name of the target scene. Format is BEAM-DIMAP.

	workflow (str [https://docs.python.org/3/library/stdtypes.html#str]) – the output SNAP XML workflow filename.

	neighbors (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – the file names of neighboring scenes

	buffer (int [https://docs.python.org/3/library/functions.html#int]) – the buffer size in meters

	gpt_args (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]] or None) – a list of additional arguments to be passed to the gpt call

	e.g. ['-x', '-c', '2048M'] for increased tile cache size and intermediate clearing

	
s1ard.snap.gsr(src, dst, workflow, src_sigma=None, gpt_args=None)

	Gamma-sigma ratio computation for either ellipsoidal or RTC sigma nought.

	Parameters:

	
	src (str [https://docs.python.org/3/library/stdtypes.html#str]) – the file name of the source scene. Both gamma and sigma bands are expected unless src_sigma is defined.

	dst (str [https://docs.python.org/3/library/stdtypes.html#str]) – the file name of the target scene. Format is BEAM-DIMAP.

	workflow (str [https://docs.python.org/3/library/stdtypes.html#str]) – the output SNAP XML workflow filename.

	src_sigma (str [https://docs.python.org/3/library/stdtypes.html#str] or None) – the optional file name of a second source product from which to read the sigma band.

	gpt_args (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]] or None) – a list of additional arguments to be passed to the gpt call

	e.g. ['-x', '-c', '2048M'] for increased tile cache size and intermediate clearing

	
s1ard.snap.look_direction(dim)

	Compute the per-pixel range look direction angle.
This adds a new layer to an existing BEAM-DIMAP product.

Steps performed:

	read geolocation grid points

	limit grid point list to those relevant to the image

	for each point, compute the range direction angle to the next point in range direction.

	interpolate the grid to the full image dimensions

Notes

	The interpolation depends on the location of the grid points relative to the image.
Hence, by subsetting the image by an amount of pixels/lines different to the grid point
sampling rate, the first and last points will no longer be in the first and last line respectively.

	The list might get very large when merging the scene with neighboring acquisitions using
SliceAssembly and this longer list significantly changes the interpolation result.
The difference in interpolation can be mitigated by reducing the list of points to
those inside the image and those just outside of it.

	Parameters:

	dim (str [https://docs.python.org/3/library/stdtypes.html#str]) – a BEAM-DIMAP metadata file (extension .dim)

	
s1ard.snap.mli(src, dst, workflow, spacing=None, rlks=None, azlks=None, gpt_args=None)

	Multi-looking.

	Parameters:

	
	src (str [https://docs.python.org/3/library/stdtypes.html#str]) – the file name of the source scene

	dst (str [https://docs.python.org/3/library/stdtypes.html#str]) – the file name of the target scene. Format is BEAM-DIMAP.

	workflow (str [https://docs.python.org/3/library/stdtypes.html#str]) – the output SNAP XML workflow filename.

	spacing (int [https://docs.python.org/3/library/functions.html#int] or float [https://docs.python.org/3/library/functions.html#float]) – the target pixel spacing for automatic determination of looks
using function pyroSAR.ancillary.multilook_factors() [https://pyrosar.readthedocs.io/en/latest/api/ancillary.html#pyroSAR.ancillary.multilook_factors].
Overridden by arguments rlks and azlks if they are not None.

	rlks (int [https://docs.python.org/3/library/functions.html#int] or None) – the number of range looks.

	azlks (int [https://docs.python.org/3/library/functions.html#int] or None) – the number of azimuth looks.

	gpt_args (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]] or None) – a list of additional arguments to be passed to the gpt call

	e.g. ['-x', '-c', '2048M'] for increased tile cache size and intermediate clearing

See also

pyroSAR.snap.auxil.mli_parametrize [https://pyrosar.readthedocs.io/en/latest/api/snap.html#pyroSAR.snap.auxil.mli_parametrize], pyroSAR.ancillary.multilook_factors [https://pyrosar.readthedocs.io/en/latest/api/ancillary.html#pyroSAR.ancillary.multilook_factors]

	
s1ard.snap.nrt_slice_num(dim)

	Compute a slice number for a scene acquired NRT Slicing mode.
In this mode both sliceNumber and totalSlices are 0 in the manifest.safe file.
sliceNumber is however needed in function grd_buffer() for
the SNAP operator SliceAssembly.
The time from segmentStartTime to last_line_time is divided by
the acquisition duration (last_line_time - first_line_time).
totalSlices is set to 100, which is expected to exceed the maximum possible value.

	Parameters:

	dim (str [https://docs.python.org/3/library/stdtypes.html#str]) – the scene in BEAM-DIMAP format

	
s1ard.snap.postprocess(src, clean_edges=True, clean_edges_pixels=4)

	Performs edge cleaning and sets the nodata value in the output ENVI HDR files.

	Parameters:

	
	src (str [https://docs.python.org/3/library/stdtypes.html#str]) – the file name of the source scene. Format is BEAM-DIMAP.

	clean_edges (bool [https://docs.python.org/3/library/functions.html#bool]) – perform edge cleaning?

	clean_edges_pixels (int [https://docs.python.org/3/library/functions.html#int]) – the number of pixels to erode during edge cleaning.

	
s1ard.snap.pre(src, dst, workflow, allow_res_osv=True, osv_continue_on_fail=False, output_noise=True, output_beta0=True, output_sigma0=True, output_gamma0=False, gpt_args=None)

	General SAR preprocessing. The following operators are used (optional steps in brackets):
Apply-Orbit-File(->Remove-GRD-Border-Noise)->Calibration->ThermalNoiseRemoval(->TOPSAR-Deburst)

	Parameters:

	
	src (str [https://docs.python.org/3/library/stdtypes.html#str]) – the file name of the source scene

	dst (str [https://docs.python.org/3/library/stdtypes.html#str]) – the file name of the target scene. Format is BEAM-DIMAP.

	workflow (str [https://docs.python.org/3/library/stdtypes.html#str]) – the output SNAP XML workflow filename.

	allow_res_osv (bool [https://docs.python.org/3/library/functions.html#bool]) – Also allow the less accurate RES orbit files to be used?

	osv_continue_on_fail (bool [https://docs.python.org/3/library/functions.html#bool]) – Continue processing if no OSV file can be downloaded or raise an error?

	output_noise (bool [https://docs.python.org/3/library/functions.html#bool]) – output the noise power images?

	output_beta0 (bool [https://docs.python.org/3/library/functions.html#bool]) – output beta nought backscatter needed for RTC?

	output_sigma0 (bool [https://docs.python.org/3/library/functions.html#bool]) – output sigma nought backscatter needed for NESZ?

	output_gamma0 (bool [https://docs.python.org/3/library/functions.html#bool]) – output gamma nought backscatter needed?

	gpt_args (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]] or None) – a list of additional arguments to be passed to the gpt call

	e.g. ['-x', '-c', '2048M'] for increased tile cache size and intermediate clearing

See also

pyroSAR.snap.auxil.orb_parametrize [https://pyrosar.readthedocs.io/en/latest/api/snap.html#pyroSAR.snap.auxil.orb_parametrize]

	
s1ard.snap.process(scene, outdir, measurement, spacing, kml, dem, dem_resampling_method='BILINEAR_INTERPOLATION', img_resampling_method='BILINEAR_INTERPOLATION', rlks=None, azlks=None, tmpdir=None, export_extra=None, allow_res_osv=True, clean_edges=True, clean_edges_pixels=4, neighbors=None, gpt_args=None, cleanup=True)

	Main function for SAR processing with SNAP.

	Parameters:

	
	scene (str [https://docs.python.org/3/library/stdtypes.html#str]) – The SAR scene file name.

	outdir (str [https://docs.python.org/3/library/stdtypes.html#str]) – The output directory for storing the final results.

	measurement ({'sigma', 'gamma'}) – the backscatter measurement convention:

	gamma: RTC gamma nought (\(\gamma^0_T\))

	sigma: RTC sigma nought (\(\sigma^0_T\))

	spacing (int [https://docs.python.org/3/library/functions.html#int] or float [https://docs.python.org/3/library/functions.html#float]) – The output pixel spacing in meters.

	kml (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to the Sentinel-2 tiling grid KML file.

	dem (str [https://docs.python.org/3/library/stdtypes.html#str]) – The DEM filename. Can be created with s1ard.dem.mosaic().

	dem_resampling_method (str [https://docs.python.org/3/library/stdtypes.html#str]) – The DEM resampling method.

	img_resampling_method (str [https://docs.python.org/3/library/stdtypes.html#str]) – The image resampling method.

	rlks (int [https://docs.python.org/3/library/functions.html#int] or None) – The number of range looks.

	azlks (int [https://docs.python.org/3/library/functions.html#int] or None) – The number of azimuth looks.

	tmpdir (str [https://docs.python.org/3/library/stdtypes.html#str] or None) – Path to a temporary directory for intermediate products.

	export_extra (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]] or None) – A list of ancillary layers to create. Default None: do not create any ancillary layers.
Options:

	DEM

	gammaSigmaRatio: \(\sigma^0_T / \gamma^0_T\)

	sigmaGammaRatio: \(\gamma^0_T / \sigma^0_T\)

	incidenceAngleFromEllipsoid

	layoverShadowMask

	localIncidenceAngle

	NESZ: noise equivalent sigma zero

	projectedLocalIncidenceAngle

	scatteringArea

	lookDirection: range look direction angle

	allow_res_osv (bool [https://docs.python.org/3/library/functions.html#bool]) – Also allow the less accurate RES orbit files to be used?

	clean_edges (bool [https://docs.python.org/3/library/functions.html#bool]) – Erode noisy image edges? See pyroSAR.snap.auxil.erode_edges() [https://pyrosar.readthedocs.io/en/latest/api/snap.html#pyroSAR.snap.auxil.erode_edges].
Does not apply to layover-shadow mask.

	clean_edges_pixels (int [https://docs.python.org/3/library/functions.html#int]) – The number of pixels to erode.

	neighbors (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]] or None) – (only applies to GRD) an optional list of neighboring scenes to add
a buffer around the main scene using function grd_buffer().
If GRDs are processed compeletely independently, gaps are introduced
due to a missing overlap. If neighbors is None or an empty list,
buffering is skipped.

	gpt_args (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]] or None) – a list of additional arguments to be passed to the gpt call

	e.g. ['-x', '-c', '2048M'] for increased tile cache size and intermediate clearing

	cleanup (bool [https://docs.python.org/3/library/functions.html#bool]) – Delete intermediate files after successful process termination?

Examples

>>> from s1ard import snap
>>> scene = 'S1A_IW_SLC__1SDV_20200103T170700_20200103T170727_030639_0382D5_6A12.zip'
>>> kml = 'S2A_OPER_GIP_TILPAR_MPC__20151209T095117_V20150622T000000_21000101T000000_B00.kml'
>>> dem = 'S1A_IW_SLC__1SDV_20200103T170700_20200103T170727_030639_0382D5_6A12_DEM_EEA10.tif'
>>> outdir = '.'
>>> spacing = 10
>>> rlks = 5
>>> azlks = 1
>>> export_extra = ['localIncidenceAngle', 'incidenceAngleFromEllipsoid',
>>> 'scatteringArea', 'layoverShadowMask', 'gammaSigmaRatio']
>>> snap.process(scene=scene, outdir=outdir, spacing=spacing, kml=kml, dem=dem,
>>> rlks=rlks, azlks=azlks, export_extra=export_extra)

	
s1ard.snap.rtc(src, dst, workflow, dem, dem_resampling_method='BILINEAR_INTERPOLATION', sigma0=True, scattering_area=True, dem_oversampling_multiple=2, gpt_args=None)

	Radiometric Terrain Flattening.

	Parameters:

	
	src (str [https://docs.python.org/3/library/stdtypes.html#str]) – the file name of the source scene

	dst (str [https://docs.python.org/3/library/stdtypes.html#str]) – the file name of the target scene. Format is BEAM-DIMAP.

	workflow (str [https://docs.python.org/3/library/stdtypes.html#str]) – the output SNAP XML workflow filename.

	dem (str [https://docs.python.org/3/library/stdtypes.html#str]) – the input DEM file name.

	dem_resampling_method (str [https://docs.python.org/3/library/stdtypes.html#str]) – the DEM resampling method.

	sigma0 (bool [https://docs.python.org/3/library/functions.html#bool]) – output sigma0 RTC backscatter?

	scattering_area (bool [https://docs.python.org/3/library/functions.html#bool]) – output scattering area image?

	dem_oversampling_multiple (int [https://docs.python.org/3/library/functions.html#int]) – a factor to multiply the DEM oversampling factor computed by SNAP.
The SNAP default of 1 has been found to be insufficient with stripe
artifacts remaining in the image.

	gpt_args (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]] or None) – a list of additional arguments to be passed to the gpt call

	e.g. ['-x', '-c', '2048M'] for increased tile cache size and intermediate clearing

	
s1ard.snap.sgr(src, dst, workflow, src_gamma=None, gpt_args=None)

	Sigma-gamma ratio computation.

	Parameters:

	
	src (str [https://docs.python.org/3/library/stdtypes.html#str]) – the file name of the source scene. Both sigma and gamma bands are expected unless src_gamma is defined.

	dst (str [https://docs.python.org/3/library/stdtypes.html#str]) – the file name of the target scene. Format is BEAM-DIMAP.

	workflow (str [https://docs.python.org/3/library/stdtypes.html#str]) – the output SNAP XML workflow filename.

	src_gamma (str [https://docs.python.org/3/library/stdtypes.html#str] or None) – the optional file name of a second source product from which to read the gamma band.

	gpt_args (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]] or None) – a list of additional arguments to be passed to the gpt call

	e.g. ['-x', '-c', '2048M'] for increased tile cache size and intermediate clearing

ARD

	calc_product_start_stop

	Calculates the start and stop times of the ARD product.

	create_acq_id_image

	Creation of the Acquisition ID image.

	create_data_mask

	Creation of the Data Mask image.

	create_rgb_vrt

	Creation of the color composite VRT file.

	create_vrt

	Creates a VRT file for the specified source dataset(s) and adds a pixel function that should be applied on the fly when opening the VRT file.

	format

	Finalizes the generation of Sentinel-1 Analysis Ready Data (ARD) products after SAR processing has finished.

	get_datasets

	Collect processing output for a list of scenes.

	wind_normalization

	Create wind normalization layers.

	
s1ard.ard.calc_product_start_stop(src_ids, extent, epsg)

	Calculates the start and stop times of the ARD product.
The geolocation grid points including their azimuth time information are extracted first from the metadata of each
source SLC. These grid points are then used to interpolate the azimuth time for the lower right and upper left
(ascending) or upper right and lower left (descending) corners of the MGRS tile extent.

	Parameters:

	
	src_ids (list [https://docs.python.org/3/library/stdtypes.html#list][pyroSAR.drivers.ID [https://pyrosar.readthedocs.io/en/latest/api/drivers.html#pyroSAR.drivers.ID]]) – List of ID [https://pyrosar.readthedocs.io/en/latest/api/drivers.html#pyroSAR.drivers.ID] objects of all source SLC scenes that overlap with the current MGRS tile.

	extent (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Spatial extent of the MGRS tile, derived from a Vector [https://spatialist.readthedocs.io/en/latest/spatialist.html#spatialist.vector.Vector] object.

	epsg (int [https://docs.python.org/3/library/functions.html#int]) – The coordinate reference system as an EPSG code.

	Returns:

	Start and stop time of the ARD product formatted as YYYYmmddTHHMMSS in UTC.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple][str [https://docs.python.org/3/library/stdtypes.html#str]]

	
s1ard.ard.create_acq_id_image(outname, ref_tif, datasets, src_ids, extent, epsg, driver, creation_opt, overviews, dst_nodata)

	Creation of the Acquisition ID image.

	Parameters:

	
	outname (str [https://docs.python.org/3/library/stdtypes.html#str]) – Full path to the output data mask file.

	ref_tif (str [https://docs.python.org/3/library/stdtypes.html#str]) – Full path to any GeoTIFF file of the ARD product.

	datasets (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – List of processed output files that match the source SLC scenes and overlap with the current MGRS tile.

	src_ids (list [https://docs.python.org/3/library/stdtypes.html#list][pyroSAR.drivers.ID [https://pyrosar.readthedocs.io/en/latest/api/drivers.html#pyroSAR.drivers.ID]]) – List of ID [https://pyrosar.readthedocs.io/en/latest/api/drivers.html#pyroSAR.drivers.ID] objects of all source SLC scenes that overlap with the current MGRS tile.

	extent (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Spatial extent of the MGRS tile, derived from a Vector [https://spatialist.readthedocs.io/en/latest/spatialist.html#spatialist.vector.Vector] object.

	epsg (int [https://docs.python.org/3/library/functions.html#int]) – The CRS used for the ARD product; provided as an EPSG code.

	driver (str [https://docs.python.org/3/library/stdtypes.html#str]) – GDAL driver to use for raster file creation.

	creation_opt (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – GDAL creation options to use for raster file creation. Should match specified GDAL driver.

	overviews (list [https://docs.python.org/3/library/stdtypes.html#list][int [https://docs.python.org/3/library/functions.html#int]]) – Internal overview levels to be created for each raster file.

	dst_nodata (int [https://docs.python.org/3/library/functions.html#int] or str [https://docs.python.org/3/library/stdtypes.html#str]) – Nodata value to write to the output raster.

	
s1ard.ard.create_data_mask(outname, datasets, extent, epsg, driver, creation_opt, overviews, overview_resampling, dst_nodata, product_type, wbm=None)

	Creation of the Data Mask image.

	Parameters:

	
	outname (str [https://docs.python.org/3/library/stdtypes.html#str]) – Full path to the output data mask file.

	datasets (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – List of processed output files that match the source scenes and overlap with the current MGRS tile.
An error will be thrown if not all datasets contain a key datamask.
The function will return without an error if not all datasets contain a key dm.

	extent (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Spatial extent of the MGRS tile, derived from a Vector [https://spatialist.readthedocs.io/en/latest/spatialist.html#spatialist.vector.Vector] object.

	epsg (int [https://docs.python.org/3/library/functions.html#int]) – The coordinate reference system as an EPSG code.

	driver (str [https://docs.python.org/3/library/stdtypes.html#str]) – GDAL driver to use for raster file creation.

	creation_opt (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – GDAL creation options to use for raster file creation. Should match specified GDAL driver.

	overviews (list [https://docs.python.org/3/library/stdtypes.html#list][int [https://docs.python.org/3/library/functions.html#int]]) – Internal overview levels to be created for each raster file.

	overview_resampling (str [https://docs.python.org/3/library/stdtypes.html#str]) – Resampling method for overview levels.

	dst_nodata (int [https://docs.python.org/3/library/functions.html#int] or str [https://docs.python.org/3/library/stdtypes.html#str]) – Nodata value to write to the output raster.

	product_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The type of ARD product that is being created. Either ‘NRB’ or ‘ORB’.

	wbm (str [https://docs.python.org/3/library/stdtypes.html#str] or None) – Path to a water body mask file with the dimensions of an MGRS tile. Optional if product_type=’NRB’, mandatory
if `product_type=’ORB’.

	
s1ard.ard.create_rgb_vrt(outname, infiles, overviews, overview_resampling)

	Creation of the color composite VRT file.

	Parameters:

	
	outname (str [https://docs.python.org/3/library/stdtypes.html#str]) – Full path to the output VRT file.

	infiles (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – A list of paths pointing to the linear scaled measurement backscatter files.

	overviews (list [https://docs.python.org/3/library/stdtypes.html#list][int [https://docs.python.org/3/library/functions.html#int]]) – Internal overview levels to be defined for the created VRT file.

	overview_resampling (str [https://docs.python.org/3/library/stdtypes.html#str]) – Resampling method applied to overview pyramids.

	
s1ard.ard.create_vrt(src, dst, fun, relpaths=False, scale=None, offset=None, dtype=None, args=None, options=None, overviews=None, overview_resampling=None)

	Creates a VRT file for the specified source dataset(s) and adds a pixel function that should be applied on the fly
when opening the VRT file.

	Parameters:

	
	src (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The input dataset(s).

	dst (str [https://docs.python.org/3/library/stdtypes.html#str]) – The output dataset.

	fun (str [https://docs.python.org/3/library/stdtypes.html#str]) – A PixelFunctionType that should be applied on the fly when opening the VRT file. The function is applied to a
band that derives its pixel information from the source bands. A list of possible options can be found here:
https://gdal.org/drivers/raster/vrt.html#default-pixel-functions.
Furthermore, the option ‘decibel’ can be specified, which will implement a custom pixel function that uses
Python code for decibel conversion (10*log10).

	relpaths (bool [https://docs.python.org/3/library/functions.html#bool]) – Should all SourceFilename XML elements with attribute @relativeToVRT=”0” be updated to be paths relative to
the output VRT file? Default is False.

	scale (int [https://docs.python.org/3/library/functions.html#int] or None) – The scale that should be applied when computing “real” pixel values from scaled pixel values on a raster band.
Will be ignored if fun=’decibel’.

	offset (float [https://docs.python.org/3/library/functions.html#float] or None) – The offset that should be applied when computing “real” pixel values from scaled pixel values on a raster band.
Will be ignored if fun=’decibel’.

	dtype (str [https://docs.python.org/3/library/stdtypes.html#str] or None) – the data type of the written VRT file; default None: same data type as source data.
data type notations of GDAL (e.g. Float32) and numpy (e.g. int8) are supported.

	args (dict [https://docs.python.org/3/library/stdtypes.html#dict] or None) – arguments for fun passed as PixelFunctionArguments. Requires GDAL>=3.5 to be read.

	options (dict [https://docs.python.org/3/library/stdtypes.html#dict] or None) – Additional parameters passed to gdal.BuildVRT.

	overviews (list [https://docs.python.org/3/library/stdtypes.html#list][int [https://docs.python.org/3/library/functions.html#int]] or None) – Internal overview levels to be created for each raster file.

	overview_resampling (str [https://docs.python.org/3/library/stdtypes.html#str] or None) – Resampling method for overview levels.

Examples

linear gamma0 backscatter as input:

>>> src = 's1a-iw-nrb-20220601t052704-043465-0530a1-32tpt-vh-g-lin.tif'

decibel scaling I:
use log10 pixel function and additional Scale parameter.
Known to display well in QGIS, but Scale is ignored when reading array in Python.

>>> dst = src.replace('-lin.tif', '-log1.vrt')
>>> create_vrt(src=src, dst=dst, fun='log10', scale=10)

decibel scaling II:
use custom Python pixel function. Requires additional environment variable GDAL_VRT_ENABLE_PYTHON set to YES.

>>> dst = src.replace('-lin.tif', '-log2.vrt')
>>> create_vrt(src=src, dst=dst, fun='decibel')

decibel scaling III:
use dB pixel function with additional PixelFunctionArguments. Works best but requires GDAL>=3.5.

>>> dst = src.replace('-lin.tif', '-log3.vrt')
>>> create_vrt(src=src, dst=dst, fun='dB', args={'fact': 10})

	
s1ard.ard.format(config, product_type, scenes, datadir, outdir, tile, extent, epsg, wbm=None, dem_type=None, multithread=True, compress=None, overviews=None, kml=None, annotation=None, update=False)

	Finalizes the generation of Sentinel-1 Analysis Ready Data (ARD) products after SAR processing has finished.
This includes the following:

	Creating all measurement and annotation datasets in Cloud Optimized GeoTIFF (COG) format

	Creating additional annotation datasets in Virtual Raster Tile (VRT) format

	Applying the ARD product directory structure & naming convention

	Generating metadata in XML and JSON formats for the ARD product as well as source SLC datasets

	Parameters:

	
	config (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary of the parsed config parameters for the current process.

	product_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The type of ARD product to be generated. Options: ‘NRB’ or ‘ORB’.

	scenes (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – List of scenes to process. Either a single scene or multiple, matching scenes (consecutive acquisitions).
All scenes are expected to overlap with extent and an error will be thrown if the processing output
cannot be found for any of the scenes.

	datadir (str [https://docs.python.org/3/library/stdtypes.html#str]) – The directory containing the SAR datasets processed from the source scenes using pyroSAR.

	outdir (str [https://docs.python.org/3/library/stdtypes.html#str]) – The directory to write the final files to.

	tile (str [https://docs.python.org/3/library/stdtypes.html#str]) – ID of an MGRS tile.

	extent (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Spatial extent of the MGRS tile, derived from a Vector [https://spatialist.readthedocs.io/en/latest/spatialist.html#spatialist.vector.Vector] object.

	epsg (int [https://docs.python.org/3/library/functions.html#int]) – The CRS used for the ARD product; provided as an EPSG code.

	wbm (str [https://docs.python.org/3/library/stdtypes.html#str] or None) – Path to a water body mask file with the dimensions of an MGRS tile.

	dem_type (str [https://docs.python.org/3/library/stdtypes.html#str] or None) – if defined, a DEM layer will be added to the product. The suffix em (elevation model) is used.
Default None: do not add a DEM layer.

	multithread (bool [https://docs.python.org/3/library/functions.html#bool]) – Should gdalwarp use multithreading? Default is True. The number of threads used, can be adjusted in the
config.ini file with the parameter gdal_threads.

	compress (str [https://docs.python.org/3/library/stdtypes.html#str] or None) – Compression algorithm to use. See https://gdal.org/drivers/raster/gtiff.html#creation-options for options.
Defaults to ‘LERC_DEFLATE’.

	overviews (list [https://docs.python.org/3/library/stdtypes.html#list][int [https://docs.python.org/3/library/functions.html#int]] or None) – Internal overview levels to be created for each GeoTIFF file. Defaults to [2, 4, 9, 18, 36]

	kml (str [https://docs.python.org/3/library/stdtypes.html#str] or None) – The KML file containing the MGRS tile geometries. Only needs to be defined if dem_type!=None.

	annotation (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]] or None) – an optional list to select the annotation layers. Default None: create all layers if the
source products contain the required input layers. Options:

	dm: data mask (four masks: not layover not shadow, layover, shadow, water)

	ei: ellipsoidal incident angle

	em: digital elevation model

	id: acquisition ID image (source scene ID per pixel)

	lc: RTC local contributing area

	ld: range look direction angle

	li: local incident angle

	np: noise power (NESZ, per polarization)

	gs: gamma-sigma ratio: sigma0 RTC / gamma0 RTC

	sg: sigma-gamma ratio: gamma0 RTC / sigma0 ellipsoidal

	wm: OCN product wind model; requires OCN scenes via argument scenes_ocn

	update (bool [https://docs.python.org/3/library/functions.html#bool]) – modify existing products so that only missing files are re-created?

	Returns:

	Either the time spent executing the function in seconds or ‘Already processed - Skip!’

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
s1ard.ard.get_datasets(scenes, datadir, extent, epsg)

	Collect processing output for a list of scenes.
Reads metadata from all source SLC/GRD scenes, finds matching output files in datadir
and filters both lists depending on the actual overlap of each SLC/GRD valid data coverage
with the current MGRS tile geometry. If no output is found for any scene the function will raise an error.
To obtain the extent of valid data coverage, first a binary
mask raster file is created with the name datamask.tif, which is stored in the same folder as
the processing output as found by find_datasets(). Then, the boundary of this
binary mask is computed and stored as datamask.gpkg (see function spatialist.vector.boundary() [https://spatialist.readthedocs.io/en/latest/spatialist.html#spatialist.vector.boundary]).
If the provided extent does not overlap with this boundary, the output is discarded. This scenario
might occur when the scene’s geometry read from its metadata overlaps with the tile but the actual
extent of data does not.

	Parameters:

	
	scenes (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – List of scenes to process. Either an individual scene or multiple, matching scenes (consecutive acquisitions).

	datadir (str [https://docs.python.org/3/library/stdtypes.html#str]) – The directory containing the SAR datasets processed from the source scenes using pyroSAR.
The function will raise an error if the processing output cannot be found for all scenes in datadir.

	extent (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Spatial extent of the MGRS tile, derived from a Vector [https://spatialist.readthedocs.io/en/latest/spatialist.html#spatialist.vector.Vector] object.

	epsg (int [https://docs.python.org/3/library/functions.html#int]) – The coordinate reference system as an EPSG code.

	Returns:

	
	ids (list[pyroSAR.drivers.ID [https://pyrosar.readthedocs.io/en/latest/api/drivers.html#pyroSAR.drivers.ID]]) – List of ID [https://pyrosar.readthedocs.io/en/latest/api/drivers.html#pyroSAR.drivers.ID] objects of all source SLC/GRD scenes that overlap with the current MGRS tile.

	datasets (list[dict]) – List of SAR processing output files that match each ID [https://pyrosar.readthedocs.io/en/latest/api/drivers.html#pyroSAR.drivers.ID] object of ids.
The format is a list of dictionaries per scene with keys as described by e.g. s1ard.snap.find_datasets().

See also

s1ard.snap.find_datasets()

	
s1ard.ard.wind_normalization(src, dst_wm, dst_wn, measurement, gapfill, bounds, epsg, driver, creation_opt, dst_nodata, multithread, resolution=915)

	Create wind normalization layers. A wind model annotation layer is created and optionally
a wind normalization VRT.

	Parameters:

	
	src (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – A list of OCN products as prepared by s1ard.ocn.extract()

	dst_wm (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the wind model layer in the ARD product

	dst_wn (str [https://docs.python.org/3/library/stdtypes.html#str] or None) – The name of the wind normalization VRT. If None, no VRT will be created.
Requires measurement to point to a file.

	measurement (str [https://docs.python.org/3/library/stdtypes.html#str] or None) – The name of the measurement file used for wind normalization in dst_wn.
If None, no wind normalization VRT will be created.

	gapfill (bool [https://docs.python.org/3/library/functions.html#bool]) – Perform additional gap filling (s1ard.ocn.gapfill())?
This is recommended if the Level-1 source product of measurement is GRD
in which case gaps are introduced between subsequently acquired scenes.

	bounds (list [https://docs.python.org/3/library/stdtypes.html#list][float [https://docs.python.org/3/library/functions.html#float]]) – the bounds of the MGRS tile

	epsg (int [https://docs.python.org/3/library/functions.html#int]) – The EPSG code of the MGRS tile

	driver (str [https://docs.python.org/3/library/stdtypes.html#str]) – GDAL driver to use for raster file creation.

	creation_opt (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – GDAL creation options to use for raster file creation. Should match specified GDAL driver.

	dst_nodata (float [https://docs.python.org/3/library/functions.html#float]) – Nodata value to write to the output raster.

	multithread (bool [https://docs.python.org/3/library/functions.html#bool]) – Should gdalwarp use multithreading?

	resolution (int [https://docs.python.org/3/library/functions.html#int], optional) – The target pixel resolution in meters. 915 is chosen as default because it is closest
to the OCN product resolution (1000) and still fits into the MGRS bounds
(109800 % 915 == 0).

ETAD

	process

	Apply ETAD correction to a Sentinel-1 SLC product.

	
s1ard.etad.process(scene, etad_dir, out_dir, log)

	Apply ETAD correction to a Sentinel-1 SLC product.

	Parameters:

	
	scene (pyroSAR.drivers.ID [https://pyrosar.readthedocs.io/en/latest/api/drivers.html#pyroSAR.drivers.ID]) – The Sentinel-1 SLC scene.

	etad_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – The directory containing ETAD products. This will be searched for products matching the defined SLC.

	out_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – The directory to store results. The ETAD product is unpacked to this directory if necessary.
Two new sub-directories SLC_original SLC_ETAD and are created, which contain the original unpacked
scene and the corrected one respectively.

	log (logging.Logger [https://docs.python.org/3/library/logging.html#logging.Logger]) – A logger object to write log info.

	Returns:

	The corrected scene as a pyroSAR ID object.

	Return type:

	pyroSAR.drivers.ID [https://pyrosar.readthedocs.io/en/latest/api/drivers.html#pyroSAR.drivers.ID]

DEM

	mosaic

	Create a new scene-specific DEM mosaic GeoTIFF file.

	prepare

	Downloads DEM and WBM tiles and restructures them into the MGRS tiling scheme including re-projection and vertical datum conversion.

	
s1ard.dem.authenticate(dem_type, username=None, password=None)

	Query the username and password. If None, environment variables DEM_USER and DEM_PASS are read.
If they are also None, the user is queried interactively.

	Parameters:

	
	dem_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – the DEM type. Needed for determining whether authentication is needed.

	username (str [https://docs.python.org/3/library/stdtypes.html#str] or None) – The username for accessing the DEM tiles. If None and authentication is required
for the selected DEM type, the environment variable ‘DEM_USER’ is read.
If this is not set, the user is prompted interactively to provide credentials.

	password (str [https://docs.python.org/3/library/stdtypes.html#str] or None) – The password for accessing the DEM tiles.
If None: same behavior as for username but with env. variable ‘DEM_PASS’.

	Returns:

	the username and password

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple][str [https://docs.python.org/3/library/stdtypes.html#str] or None]

	
s1ard.dem.mosaic(geometry, dem_type, outname, epsg=None, kml_file=None, dem_dir=None, username=None, password=None, threads=4)

	Create a new scene-specific DEM mosaic GeoTIFF file.
Can be created from MGRS-tiled DEMs as created by s1ard.dem.prepare()
or ad hoc using pyroSAR.auxdata.dem_autoload() [https://pyrosar.readthedocs.io/en/latest/api/auxdata.html#pyroSAR.auxdata.dem_autoload] and pyroSAR.auxdata.dem_create() [https://pyrosar.readthedocs.io/en/latest/api/auxdata.html#pyroSAR.auxdata.dem_create].
In the former case the arguments username, password and threads are ignored and
all tiles found in dem_dir are read.
In the latter case the arguments epsg, kml_file and dem_dir are ignored and the DEM is
only mosaiced and geoid-corrected.

	Parameters:

	
	geometry (spatialist.vector.Vector [https://spatialist.readthedocs.io/en/latest/spatialist.html#spatialist.vector.Vector]) – The geometry to be covered by the mosaic.

	dem_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The DEM type.

	outname (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the mosaic.

	epsg (int [https://docs.python.org/3/library/functions.html#int] or None) – The coordinate reference system as an EPSG code.

	kml_file (str [https://docs.python.org/3/library/stdtypes.html#str] or None) – The KML file containing the MGRS tile geometries.

	dem_dir (str [https://docs.python.org/3/library/stdtypes.html#str] or None) – The directory containing the DEM MGRS tiles.

	username (str [https://docs.python.org/3/library/stdtypes.html#str] or None) – The username for accessing the DEM tiles. If None and authentication is required
for the selected DEM type, the environment variable ‘DEM_USER’ is read.
If this is not set, the user is prompted interactively to provide credentials.

	password (str [https://docs.python.org/3/library/stdtypes.html#str] or None) – The password for accessing the DEM tiles.
If None: same behavior as for username but with env. variable ‘DEM_PASS’.

	threads (int [https://docs.python.org/3/library/functions.html#int]) – The number of threads to pass to pyroSAR.auxdata.dem_create() [https://pyrosar.readthedocs.io/en/latest/api/auxdata.html#pyroSAR.auxdata.dem_create].

	
s1ard.dem.prepare(vector, dem_type, dem_dir, wbm_dir, kml_file, dem_strict=True, tilenames=None, threads=None, username=None, password=None)

	Downloads DEM and WBM tiles and restructures them into the MGRS tiling
scheme including re-projection and vertical datum conversion.

	Parameters:

	
	vector (spatialist.vector.Vector [https://spatialist.readthedocs.io/en/latest/spatialist.html#spatialist.vector.Vector]) – The vector object for which to prepare the DEM and WBM tiles.
CRS must be EPSG:4236.

	dem_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The DEM type.

	dem_dir (str [https://docs.python.org/3/library/stdtypes.html#str] or None) – The DEM target directory. DEM preparation can be skipped if set to None.

	wbm_dir (str [https://docs.python.org/3/library/stdtypes.html#str] or None) – The WBM target directory. WBM preparation can be skipped if set to None

	kml_file (str [https://docs.python.org/3/library/stdtypes.html#str]) – The KML file containing the MGRS tile geometries.

	dem_strict (bool [https://docs.python.org/3/library/functions.html#bool]) – strictly only create DEM tiles in the native CRS of the MGRS tile or
also allow reprojection to ensure full coverage of the vector object in every CRS.

	tilenames (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]] or None) – an optional list of MGRS tile names. Default None: process all overalapping tiles.

	threads (int [https://docs.python.org/3/library/functions.html#int] or None) – The number of threads to pass to pyroSAR.auxdata.dem_create() [https://pyrosar.readthedocs.io/en/latest/api/auxdata.html#pyroSAR.auxdata.dem_create].
Default None: use the value of GDAL_NUM_THREADS without modification.

	username (str [https://docs.python.org/3/library/stdtypes.html#str] or None) – The username for accessing the DEM tiles. If None and authentication is required
for the selected DEM type, the environment variable ‘DEM_USER’ is read.
If this is not set, the user is prompted interactively to provide credentials.

	password (str [https://docs.python.org/3/library/stdtypes.html#str] or None) – The password for accessing the DEM tiles.
If None: same behavior as for username but with env. variable ‘DEM_PASS’.

Examples

>>> from s1ard import dem
>>> from spatialist import bbox
>>> ext = {'xmin': 12, 'xmax': 13, 'ymin': 50, 'ymax': 51}
>>> kml = 'S2A_OPER_GIP_TILPAR_MPC__20151209T095117_V20150622T000000_21000101T000000_B00.kml'
strictly only create overlapping DEM tiles in their native CRS.
Will create tiles 32UQA, 32UQB, 33UUR and 33UUS.
>>> with bbox(coordinates=ext, crs=4326) as vec:
>>> dem.prepare(vector=vec, dem_type='Copernicus 30m Global DEM',
>>> dem_dir='DEM', wbm_dir=None, dem_strict=True,
>>> kml_file=kml, threads=4)
Process all overlapping DEM tiles to each CRS.
Will additionally create tiles 32UQA_32633, 32UQB_32633, 33UUR_32632 and 33UUS_32632.
>>> with bbox(coordinates=ext, crs=4326) as vec:
>>> dem.prepare(vector=vec, dem_type='Copernicus 30m Global DEM',
>>> dem_dir='DEM', wbm_dir=None, dem_strict=False,
>>> kml_file=kml, threads=4)

See also

s1ard.tile_extraction.tile_from_aoi

	
s1ard.dem.to_mgrs(tile, dst, kml, dem_type, overviews, tr, format='COG', create_options=None, threads=None, pbar=False)

	Create an MGRS-tiled DEM file.

	Parameters:

	
	tile (str [https://docs.python.org/3/library/stdtypes.html#str]) – the MGRS tile ID

	dst (str [https://docs.python.org/3/library/stdtypes.html#str]) – the destination file name

	kml (str [https://docs.python.org/3/library/stdtypes.html#str]) – The KML file containing the MGRS tile geometries.

	dem_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The DEM type.

	overviews (list [https://docs.python.org/3/library/stdtypes.html#list][int [https://docs.python.org/3/library/functions.html#int]]) – The overview levels

	tr (tuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int] or float [https://docs.python.org/3/library/functions.html#float]]) – the target resolution as (x, y)

	format (str [https://docs.python.org/3/library/stdtypes.html#str]) – the output file format

	create_options (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]] or None) – additional creation options to be passed to spatialist.auxil.gdalwarp() [https://spatialist.readthedocs.io/en/latest/spatialist.html#spatialist.auxil.gdalwarp].

	threads (int [https://docs.python.org/3/library/functions.html#int] or None) – The number of threads to pass to pyroSAR.auxdata.dem_create() [https://pyrosar.readthedocs.io/en/latest/api/auxdata.html#pyroSAR.auxdata.dem_create].
Default None: use the value of GDAL_NUM_THREADS without modification.

	pbar (bool [https://docs.python.org/3/library/functions.html#bool])

OCN

	extract

	Extract an OCN product's image variable and write it to a new GeoTIFF file.

	gapfill

	Fill gaps of an image file using GDAL.

	
s1ard.ocn.extract(src, dst, variable)

	Extract an OCN product’s image variable and write it to a new GeoTIFF file.
Coordinates are extracted from the corresponding latitude and longitude
image variables and the corner coordinates written as ground control
points (GCPs) to the output file.

	Parameters:

	
	src (str [https://docs.python.org/3/library/stdtypes.html#str]) – path to OCN product SAFE folder

	dst (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name of the GeoTIFF file to write

	variable (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the layer to extract from the OCN product, e.g. owiNrcsCmod

	
s1ard.ocn.gapfill(src, dst, md, si)

	Fill gaps of an image file using GDAL.

	Parameters:

	
	src (str [https://docs.python.org/3/library/stdtypes.html#str]) – the source image file

	dst (str [https://docs.python.org/3/library/stdtypes.html#str]) – the destination image file with gaps filled

	md (int [https://docs.python.org/3/library/functions.html#int]) – the interpolation maximum distance

	si (int [https://docs.python.org/3/library/functions.html#int]) – the number of smoothing iterations

See also

osgeo.gdal.FillNodata [https://gdal.org/api/python/utilities.html#osgeo.gdal.FillNodata]

Tile Extraction

	aoi_from_scene

	Get processing AOIs for a SAR scene.

	aoi_from_tile

	Extract one or multiple MGRS tiles from the global Sentinel-2 tiling grid and return it as a Vector [https://spatialist.readthedocs.io/en/latest/spatialist.html#spatialist.vector.Vector] object.

	description2dict

	Convert the HTML description field of the MGRS tile KML file to a dictionary.

	tile_from_aoi

	Return a list of MGRS tile IDs or vector objects overlapping one or multiple areas of interest.

	
s1ard.tile_extraction.aoi_from_scene(scene, kml, multi=True, percent=1)

	Get processing AOIs for a SAR scene. The MGRS grid requires a SAR scene to be geocoded to multiple UTM zones
depending on the overlapping MGRS tiles and their projection. This function returns the following for each
UTM zone group:

	the extent in WGS84 coordinates (key extent)

	the EPSG code of the UTM zone (key epsg)

	the Easting coordinate for pixel alignment (key align_x)

	the Northing coordinate for pixel alignment (key align_y)

A minimum overlap of the AOIs with the SAR scene is ensured by buffering the AOIs if necessary.
The minimum overlap can be controlled with parameter percent.

	Parameters:

	
	scene (pyroSAR.drivers.ID [https://pyrosar.readthedocs.io/en/latest/api/drivers.html#pyroSAR.drivers.ID]) – the SAR scene object

	kml (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to the Sentinel-2 tiling grid KML file.

	multi (bool [https://docs.python.org/3/library/functions.html#bool]) – split into multiple AOIs per overlapping UTM zone or just one AOI covering the whole scene.
In the latter case the best matching UTM zone is auto-detected
(using function spatialist.auxil.utm_autodetect() [https://spatialist.readthedocs.io/en/latest/spatialist.html#spatialist.auxil.utm_autodetect]).

	percent (int [https://docs.python.org/3/library/functions.html#int] or float [https://docs.python.org/3/library/functions.html#float]) – the minimum overlap in percent of each AOI with the SAR scene.
See function s1ard.ancillary.buffer_min_overlap().

	Returns:

	a list of dictionaries with keys extent, epsg, align_x, align_y

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]

	
s1ard.tile_extraction.aoi_from_tile(kml, tile)

	Extract one or multiple MGRS tiles from the global Sentinel-2 tiling grid and return it as a Vector [https://spatialist.readthedocs.io/en/latest/spatialist.html#spatialist.vector.Vector]
object.

	Parameters:

	
	kml (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to the Sentinel-2 tiling grid KML file.

	tile (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The MGRS tile ID(s) that should be extracted and returned as a vector object.
Can also be expressed as <tile ID>_<EPSG code> (e.g. 33TUN_32632). In this case the geometry
of the tile is reprojected to the target EPSG code, its corner coordinates rounded to multiples
of 10, and a new Vector [https://spatialist.readthedocs.io/en/latest/spatialist.html#spatialist.vector.Vector] object created.

	Returns:

	either a single object or a list depending on tile

	Return type:

	spatialist.vector.Vector [https://spatialist.readthedocs.io/en/latest/spatialist.html#spatialist.vector.Vector] or list [https://docs.python.org/3/library/stdtypes.html#list][spatialist.vector.Vector [https://spatialist.readthedocs.io/en/latest/spatialist.html#spatialist.vector.Vector]]

Notes

The global Sentinel-2 tiling grid can be retrieved from:
https://sentinel.esa.int/documents/247904/1955685/S2A_OPER_GIP_TILPAR_MPC__20151209T095117_V20150622T000000_21000101T000000_B00.kml

	
s1ard.tile_extraction.description2dict(description)

	Convert the HTML description field of the MGRS tile KML file to a dictionary.

	Parameters:

	description (str [https://docs.python.org/3/library/stdtypes.html#str]) – The plain text of the Description field

	Returns:

	attrib – A dictionary with keys ‘TILE_ID’, ‘EPSG’, ‘MGRS_REF’, ‘UTM_WKT’ and ‘LL_WKT’.
The value of field ‘EPSG’ is of type integer, all others are strings.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
s1ard.tile_extraction.tile_from_aoi(vector, kml, epsg=None, strict=True, return_geometries=False, tilenames=None)

	Return a list of MGRS tile IDs or vector objects overlapping one or multiple areas of interest.

	Parameters:

	
	vector (spatialist.vector.Vector [https://spatialist.readthedocs.io/en/latest/spatialist.html#spatialist.vector.Vector] or list [https://docs.python.org/3/library/stdtypes.html#list][spatialist.vector.Vector [https://spatialist.readthedocs.io/en/latest/spatialist.html#spatialist.vector.Vector]]) – The vector object(s) to read. CRS must be EPSG:4236.

	kml (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to the Sentinel-2 tiling grid KML file.

	epsg (int [https://docs.python.org/3/library/functions.html#int] or list [https://docs.python.org/3/library/stdtypes.html#list][int [https://docs.python.org/3/library/functions.html#int]] or None) – Define which EPSG code(s) are allowed for the tile selection.
If None, all tile IDs are returned regardless of projection.

	strict (bool [https://docs.python.org/3/library/functions.html#bool]) – Strictly only return the names/geometries of the overlapping tiles in the target projection
or also allow reprojection of neighbouring tiles?
In the latter case a tile name takes the form <tile ID>_<EPSG code>, e.g. 33TUN_32632.
Only applies if argument epsg is of type int or a list with one element.

	return_geometries (bool [https://docs.python.org/3/library/functions.html#bool]) – return a list of spatialist.vector.Vector [https://spatialist.readthedocs.io/en/latest/spatialist.html#spatialist.vector.Vector] geometry objects (or just the tile names)?

	tilenames (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]] or None) – an optional list of MGRS tile names to limit the selection

	Returns:

	tiles – A list of unique MGRS tile IDs or spatialist.vector.Vector [https://spatialist.readthedocs.io/en/latest/spatialist.html#spatialist.vector.Vector]
objects with an attribute mgrs containing the tile ID.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str] or spatialist.vector.Vector [https://spatialist.readthedocs.io/en/latest/spatialist.html#spatialist.vector.Vector]]

Notes

The global Sentinel-2 tiling grid can be retrieved from:
https://sentinel.esa.int/documents/247904/1955685/S2A_OPER_GIP_TILPAR_MPC__20151209T095117_V20150622T000000_21000101T000000_B00.kml

Ancillary Functions

	buffer_min_overlap

	Buffer a geometry to a minimum overlap with a second geometry.

	check_scene_consistency

	Check the consistency of a scene selection.

	check_spacing

	Check whether the spacing fits into the MGRS tile boundaries.

	generate_unique_id

	Returns a unique product identifier as a hexadecimal string.

	get_max_ext

	Gets the maximum extent from a list of geometries.

	group_by_time

	Group scenes by their acquisition time difference.

	log

	Format and handle log messages during processing.

	set_logging

	Set logging for the current process.

	vrt_add_overviews

	Add overviews to an existing VRT file.

	
s1ard.ancillary.buffer_min_overlap(geom1, geom2, percent=1)

	Buffer a geometry to a minimum overlap with a second geometry.
The geometry is iteratively buffered until the minimum overlap is reached.
If the overlap of the input geometries is already larger than the defined
threshold, a copy of the original geometry is returned.

	Parameters:

	
	geom1 (spatialist.vector.Vector [https://spatialist.readthedocs.io/en/latest/spatialist.html#spatialist.vector.Vector]) – the geometry to be buffered

	geom2 (spatialist.vector.Vector [https://spatialist.readthedocs.io/en/latest/spatialist.html#spatialist.vector.Vector]) – the reference geometry to intersect with

	percent (int [https://docs.python.org/3/library/functions.html#int] or float [https://docs.python.org/3/library/functions.html#float]) – the minimum overlap in percent of geom1

	
s1ard.ancillary.buffer_time(start, stop, **kwargs)

	Time range buffering

	Parameters:

	
	start (str [https://docs.python.org/3/library/stdtypes.html#str]) – the start time in format ‘%Y%m%dT%H%M%S’

	stop (str [https://docs.python.org/3/library/stdtypes.html#str]) – the stop time in format ‘%Y%m%dT%H%M%S’

	kwargs – time arguments passed to datetime.timedelta()

	
s1ard.ancillary.check_scene_consistency(scenes)

	Check the consistency of a scene selection.
The following pyroSAR object attributes must be the same:

	sensor

	acquisition_mode

	product

	frameNumber (data take ID)

	Parameters:

	scenes (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str] or pyroSAR.drivers.ID [https://pyrosar.readthedocs.io/en/latest/api/drivers.html#pyroSAR.drivers.ID]])

	Raises:

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] –

	
s1ard.ancillary.check_spacing(spacing)

	Check whether the spacing fits into the MGRS tile boundaries.

	Parameters:

	spacing (int [https://docs.python.org/3/library/functions.html#int] or float [https://docs.python.org/3/library/functions.html#float]) – the target pixel spacing in meters

	
s1ard.ancillary.generate_unique_id(encoded_str)

	Returns a unique product identifier as a hexadecimal string.
The CRC-16 algorithm used to compute the unique identifier is CRC-CCITT (0xFFFF).

	Parameters:

	encoded_str (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – A string that should be used to generate a unique id from. The string needs to be encoded; e.g.:
'abc'.encode()

	Returns:

	p_id – The unique product identifier.

	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
s1ard.ancillary.get_max_ext(geometries, buffer=None)

	Gets the maximum extent from a list of geometries.

	Parameters:

	
	geometries (list [https://docs.python.org/3/library/stdtypes.html#list][spatialist.vector.Vector [https://spatialist.readthedocs.io/en/latest/spatialist.html#spatialist.vector.Vector]]) – List of Vector [https://spatialist.readthedocs.io/en/latest/spatialist.html#spatialist.vector.Vector] geometries.

	buffer (float [https://docs.python.org/3/library/functions.html#float] or None) – The buffer in units of the geometries’ CRS to add to the extent.

	Returns:

	max_ext – The maximum extent of the selected Vector [https://spatialist.readthedocs.io/en/latest/spatialist.html#spatialist.vector.Vector] geometries including the chosen buffer.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
s1ard.ancillary.group_by_time(scenes, time=3)

	Group scenes by their acquisition time difference.

	Parameters:

	
	scenes (list [https://docs.python.org/3/library/stdtypes.html#list][pyroSAR.drivers.ID [https://pyrosar.readthedocs.io/en/latest/api/drivers.html#pyroSAR.drivers.ID] or str [https://docs.python.org/3/library/stdtypes.html#str]]) – a list of image names

	time (int [https://docs.python.org/3/library/functions.html#int] or float [https://docs.python.org/3/library/functions.html#float]) – a time difference in seconds by which to group the scenes.
The default of 3 seconds incorporates the overlap between SLCs.

	Returns:

	a list of sub-lists containing the file names of the grouped scenes

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][list [https://docs.python.org/3/library/stdtypes.html#list][pyroSAR.drivers.ID [https://pyrosar.readthedocs.io/en/latest/api/drivers.html#pyroSAR.drivers.ID]]]

	
s1ard.ancillary.log(handler, mode, proc_step, scenes, msg)

	Format and handle log messages during processing.

	Parameters:

	
	handler (logging.Logger [https://docs.python.org/3/library/logging.html#logging.Logger]) – The log handler for the current process.

	mode ({'info', 'warning', 'exception'}) – Calls the respective logging helper function. E.g., handler.info().

	proc_step (str [https://docs.python.org/3/library/stdtypes.html#str]) – The processing step for which the message is logged.

	scenes (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Scenes that are currently being processed.

	msg (Any) – The message that should be logged.

	
s1ard.ancillary.set_logging(config, debug=False)

	Set logging for the current process.

	Parameters:

	
	config (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary of the parsed config parameters for the current process.

	debug (bool [https://docs.python.org/3/library/functions.html#bool]) – Set pyroSAR logging level to DEBUG?

	Returns:

	log_local – The log handler for the current process.

	Return type:

	logging.Logger [https://docs.python.org/3/library/logging.html#logging.Logger]

	
s1ard.ancillary.vrt_add_overviews(vrt, overviews, resampling='AVERAGE')

	Add overviews to an existing VRT file.
Existing overviews will be overwritten.

	Parameters:

	
	vrt (str [https://docs.python.org/3/library/stdtypes.html#str]) – the VRT file

	overviews (list [https://docs.python.org/3/library/stdtypes.html#list][int [https://docs.python.org/3/library/functions.html#int]]) – the overview levels

	resampling (str [https://docs.python.org/3/library/stdtypes.html#str]) – the overview resampling method

Scene Search

	ASF

	Simple SAR metadata handler for scenes in the ASF archive.

	ASFArchive

	Search for scenes in the Alaska Satellite Facility (ASF) catalog.

	STACArchive

	Search for scenes in a SpatioTemporal Asset Catalog.

	asf_select

	Search scenes in the Alaska Satellite Facility (ASF) data catalog.

	check_acquisition_completeness

	Check presence of neighboring acquisitions.

	collect_neighbors

	Collect a scene's neighboring acquisitions in a data take.

	scene_select

	Central scene search utility.

	
class s1ard.search.ASF(meta)

	Bases: ID [https://pyrosar.readthedocs.io/en/latest/api/drivers.html#pyroSAR.drivers.ID]

Simple SAR metadata handler for scenes in the ASF archive. The interface is consistent with the driver classes in
pyroSAR.drivers [https://pyrosar.readthedocs.io/en/latest/api/drivers.html#module-pyroSAR.drivers] but does not implement the full functionality due to limited content of the CMR
metadata catalog. Registered attributes:

	acquisition_mode

	coordinates

	frameNumber

	orbit

	orbitNumber_abs

	orbitNumber_rel

	polarizations

	product

	projection

	sensor

	start

	stop

	
scanMetadata()

	scan SAR scenes for metadata attributes.
The returned dictionary is registered as attribute meta by the class upon object initialization.
This dictionary furthermore needs to return a set of standardized attribute keys,
which are directly registered as object attributes.

	Returns:

	the derived attributes

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
class s1ard.search.ASFArchive

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Search for scenes in the Alaska Satellite Facility (ASF) catalog.

	
static select(sensor=None, product=None, acquisition_mode=None, mindate=None, maxdate=None, vectorobject=None, date_strict=True, return_value='url')

	Select scenes from the ASF catalog. This is a simple wrapper around the function
asf_select() to be consistent with the interfaces of
STACArchive() and pyroSAR.drivers.Archive [https://pyrosar.readthedocs.io/en/latest/api/drivers.html#pyroSAR.drivers.Archive].

	Parameters:

	
	sensor (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]] or None) – S1A or S1B

	product (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]] or None) – GRD or SLC

	acquisition_mode (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]] or None) – IW, EW or SM

	mindate (str [https://docs.python.org/3/library/stdtypes.html#str] or datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] or None) – the minimum acquisition date

	maxdate (str [https://docs.python.org/3/library/stdtypes.html#str] or datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] or None) – the maximum acquisition date

	vectorobject (spatialist.vector.Vector [https://spatialist.readthedocs.io/en/latest/spatialist.html#spatialist.vector.Vector] or None) – a geometry with which the scenes need to overlap

	date_strict (bool [https://docs.python.org/3/library/functions.html#bool]) – treat dates as strict limits or also allow flexible limits to incorporate scenes
whose acquisition period overlaps with the defined limit?

	strict: start >= mindate & stop <= maxdate

	not strict: stop >= mindate & start <= maxdate

	return_value (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – the metadata return value; see asf_select() for details

See also

asf_select

	Returns:

	the scene metadata attributes as specified with return_value;
see asf_select() for details

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple][str [https://docs.python.org/3/library/stdtypes.html#str]] or ASF]

	
class s1ard.search.STACArchive(url, collections, timeout=60, max_retries=20)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Search for scenes in a SpatioTemporal Asset Catalog.
Scenes are expected to be unpacked with a folder suffix .SAFE.
The interface is kept consistent with ASFArchive()
and pyroSAR.drivers.Archive [https://pyrosar.readthedocs.io/en/latest/api/drivers.html#pyroSAR.drivers.Archive].

	Parameters:

	
	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – the catalog URL

	collections (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – the catalog collection(s) to be searched

	timeout (int [https://docs.python.org/3/library/functions.html#int]) – the allowed timeout in seconds

	max_retries (int [https://docs.python.org/3/library/functions.html#int] or None) – the number of times to retry requests. Set to None to disable retries.

See also

pystac_client.Client.open [https://pystac-client.readthedocs.io/en/stable/api.html#pystac_client.Client.open], pystac_client.stac_api_io.StacApiIO [https://pystac-client.readthedocs.io/en/stable/api.html#pystac_client.stac_api_io.StacApiIO]

	
close()

	

	
select(sensor=None, product=None, acquisition_mode=None, mindate=None, maxdate=None, frameNumber=None, vectorobject=None, date_strict=True, check_exist=True)

	Select scenes from the catalog. Used STAC keys:

	platform

	start_datetime

	end_datetime

	sar:instrument_mode

	sar:product_type

	s1:datatake (custom)

	Parameters:

	
	sensor (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]] or None) – S1A or S1B

	product (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]] or None) – GRD or SLC

	acquisition_mode (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]] or None) – IW, EW or SM

	mindate (str [https://docs.python.org/3/library/stdtypes.html#str] or datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] or None) – the minimum acquisition date

	maxdate (str [https://docs.python.org/3/library/stdtypes.html#str] or datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] or None) – the maximum acquisition date

	frameNumber (int [https://docs.python.org/3/library/functions.html#int] or list [https://docs.python.org/3/library/stdtypes.html#list][int [https://docs.python.org/3/library/functions.html#int]] or None) – the data take ID in decimal representation.
Requires custom STAC key s1:datatake.

	vectorobject (spatialist.vector.Vector [https://spatialist.readthedocs.io/en/latest/spatialist.html#spatialist.vector.Vector] or None) – a geometry with which the scenes need to overlap

	date_strict (bool [https://docs.python.org/3/library/functions.html#bool]) – treat dates as strict limits or also allow flexible limits to incorporate scenes
whose acquisition period overlaps with the defined limit?

	strict: start >= mindate & stop <= maxdate

	not strict: stop >= mindate & start <= maxdate

	check_exist (bool [https://docs.python.org/3/library/functions.html#bool]) – check whether found files exist locally?

	Returns:

	the locations of the scene directories with suffix .SAFE

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]

See also

pystac_client.Client.search [https://pystac-client.readthedocs.io/en/stable/api.html#pystac_client.Client.search]

	
s1ard.search.asf_select(sensor, product, acquisition_mode, mindate, maxdate, vectorobject=None, return_value='url', date_strict=True)

	Search scenes in the Alaska Satellite Facility (ASF) data catalog. This is a simple interface to the
asf_search [https://github.com/asfadmin/Discovery-asf_search] package.

	Parameters:

	
	sensor (str [https://docs.python.org/3/library/stdtypes.html#str]) – S1A or S1B

	product (str [https://docs.python.org/3/library/stdtypes.html#str]) – GRD or SLC

	acquisition_mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – IW, EW or SM

	mindate (str [https://docs.python.org/3/library/stdtypes.html#str] or datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]) – the minimum acquisition date

	maxdate (str [https://docs.python.org/3/library/stdtypes.html#str] or datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]) – the maximum acquisition date

	vectorobject (spatialist.vector.Vector [https://spatialist.readthedocs.io/en/latest/spatialist.html#spatialist.vector.Vector] or None) – a geometry with which the scenes need to overlap

	return_value (str [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – the metadata return value; if ASF, an ASF object is returned;
further string options specify certain properties to return: beamModeType, browse,
bytes, centerLat, centerLon, faradayRotation, fileID, flightDirection, groupID,
granuleType, insarStackId, md5sum, offNadirAngle, orbit, pathNumber, platform,
pointingAngle, polarization, processingDate, processingLevel, sceneName, sensor,
startTime, stopTime, url, pgeVersion, fileName, frameNumber; all options except
ASF can also be combined in a list

	date_strict (bool [https://docs.python.org/3/library/functions.html#bool]) – treat dates as strict limits or also allow flexible limits to incorporate scenes
whose acquisition period overlaps with the defined limit?

	strict: start >= mindate & stop <= maxdate

	not strict: stop >= mindate & start <= maxdate

	Returns:

	the scene metadata attributes as specified with return_value; the return type is a list of strings,
tuples or ASF objects depending on whether return_type is of type string, list or ASF.

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str] or tuple [https://docs.python.org/3/library/stdtypes.html#tuple][str [https://docs.python.org/3/library/stdtypes.html#str]] or ASF]

	
s1ard.search.check_acquisition_completeness(archive, scenes)

	Check presence of neighboring acquisitions.
Check that for each scene a predecessor and successor can be queried
from the database unless the scene is at the start or end of the data take.
This ensures that no scene that could be covering an area of interest is missed
during processing. In case a scene is suspected to be missing, the Alaska Satellite Facility (ASF)
online catalog is cross-checked.
An error will only be raised if the locally missing scene is present in the ASF catalog.

	Parameters:

	
	archive (pyroSAR.drivers.Archive [https://pyrosar.readthedocs.io/en/latest/api/drivers.html#pyroSAR.drivers.Archive] or STACArchive) – an open scene archive connection

	scenes (list [https://docs.python.org/3/library/stdtypes.html#list][pyroSAR.drivers.ID [https://pyrosar.readthedocs.io/en/latest/api/drivers.html#pyroSAR.drivers.ID]]) – a list of scenes

	Raises:

	RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] –

See also

s1ard.search.asf_select

	
s1ard.search.collect_neighbors(archive, scene)

	Collect a scene’s neighboring acquisitions in a data take.

	Parameters:

	
	archive (pyroSAR.drivers.Archive [https://pyrosar.readthedocs.io/en/latest/api/drivers.html#pyroSAR.drivers.Archive] or STACArchive or ASFArchive) – an open scene archive connection

	scene (pyroSAR.drivers.ID [https://pyrosar.readthedocs.io/en/latest/api/drivers.html#pyroSAR.drivers.ID]) – the Sentinel-1 scene to be checked

	Returns:

	the file names of the neighboring scenes

	Return type:

	list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]

	
s1ard.search.scene_select(archive, kml_file, aoi_tiles=None, aoi_geometry=None, **kwargs)

	Central scene search utility. Selects scenes from a database and returns their file names
together with the MGRS tile names for which to process ARD products.
The list of MGRS tile names is either identical to the list provided with aoi_tiles,
the list of all tiles overlapping with aoi_geometry or vectorobject (via kwargs),
or the list of all tiles overlapping with an initial scene search result if no geometry
has been defined via aoi_tiles or aoi_geometry. In the latter (most complex) case,
the search procedure is as follows:

	perform a first search matching all other search parameters

	derive all MGRS tile geometries overlapping with the selection

	derive the minimum and maximum acquisition times of the selection as search parameters
mindate and maxdate

	extend the mindate and maxdate search parameters by one minute

	perform a second search with the extended acquisition date parameters and the
derived MGRS tile geometries

As consequence, if one defines the search parameters to only return one scene, the neighboring
acquisitions will also be returned. This is because the scene overlaps with a set of MGRS
tiles of which many or all will also overlap with these neighboring acquisitions. To ensure
full coverage of all MGRS tiles, the neighbors of the scene in focus have to be processed too.

This function has three ways to define search geometries. In order of priority overriding others:
aoi_tiles > aoi_geometry > vectorobject (via kwargs). In the latter two cases, the search
geometry is extended to the bounding box of all MGRS tiles overlapping with the initial geometry
to ensure full coverage of all tiles.

	Parameters:

	
	archive (pyroSAR.drivers.Archive [https://pyrosar.readthedocs.io/en/latest/api/drivers.html#pyroSAR.drivers.Archive] or STACArchive or ASFArchive) – an open scene archive connection

	kml_file (str [https://docs.python.org/3/library/stdtypes.html#str]) – the KML file containing the MGRS tile geometries.

	aoi_tiles (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]] or None) – a list of MGRS tile names for spatial search

	aoi_geometry (str [https://docs.python.org/3/library/stdtypes.html#str] or None) – the name of a vector geometry file for spatial search

	kwargs – further search arguments passed to pyroSAR.drivers.Archive.select() [https://pyrosar.readthedocs.io/en/latest/api/drivers.html#pyroSAR.drivers.Archive.select]
or STACArchive.select() or ASFArchive.select()

	Returns:

	
	the list of scenes

	the list of MGRS tiles

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple][list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]], list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]]

Metadata

Extraction

	calc_enl

	Calculate the Equivalent Number of Looks (ENL) for a linear-scaled backscatter measurement GeoTIFF file.

	calc_geolocation_accuracy

	Calculates the radial root mean square error, which is a target requirement of the CARD4L NRB specification (Item 4.3).

	calc_performance_estimates

	Calculates the performance estimates specified in CARD4L NRB 1.6.9 for all noise power images if available.

	calc_pslr_islr

	Extracts all values for Peak Side Lobe Ratio (PSLR) and Integrated Side Lobe Ratio (ISLR) from the annotation metadata of a scene and calculates the mean value for all swaths.

	copy_src_meta

	Copies the original metadata of the source scenes to the ARD product directory.

	find_in_annotation

	Search for a pattern in all XML annotation files provided and return a dictionary of results.

	geometry_from_vec

	Get geometry information for usage in STAC and XML metadata from a spatialist.vector.Vector [https://spatialist.readthedocs.io/en/latest/spatialist.html#spatialist.vector.Vector] object.

	get_header_size

	Gets the header size of a GeoTIFF file in bytes.

	get_prod_meta

	Returns a metadata dictionary, which is generated from the name of a product scene using a regular expression pattern and from a measurement GeoTIFF file of the same product scene using the Raster [https://spatialist.readthedocs.io/en/latest/spatialist.html#spatialist.raster.Raster] class.

	get_src_meta

	Retrieve the manifest and annotation XML data of a scene as a dictionary using an pyroSAR.drivers.ID [https://pyrosar.readthedocs.io/en/latest/api/drivers.html#pyroSAR.drivers.ID] object.

	meta_dict

	Creates a dictionary containing metadata for a product scene, as well as its source scenes.

	
s1ard.metadata.extract.calc_enl(tif, block_size=30, return_arr=False, decimals=2)

	Calculate the Equivalent Number of Looks (ENL) for a linear-scaled backscatter measurement GeoTIFF file. The
calculation is performed block-wise for the entire image and by default the median ENL value is returned.

	Parameters:

	
	tif (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to a linear-scaled backscatter measurement GeoTIFF file.

	block_size (int [https://docs.python.org/3/library/functions.html#int], optional) – The block size to use for the calculation. Remainder pixels are discarded, if the array dimensions are not
evenly divisible by the block size. Default is 30, which calculates ENL for 30x30 pixel blocks.

	return_arr (bool [https://docs.python.org/3/library/functions.html#bool], optional) – If True, the calculated ENL array is returned. Default is False.

	decimals (int [https://docs.python.org/3/library/functions.html#int], optional) – Number of decimal places to round the calculated ENL value to. Default is 2.

	Returns:

	The median ENL value or array of ENL values if return_enl_arr is True.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float] or numpy.ndarray

References

[2]

	
s1ard.metadata.extract.calc_geolocation_accuracy(swath_identifier, ei_tif, etad, decimals=2)

	Calculates the radial root mean square error, which is a target requirement of the CARD4L NRB specification
(Item 4.3). For more information see: https://s1-nrb.readthedocs.io/en/latest/general/geoaccuracy.html.
Currently only the Copernicus DEM is supported.

	Parameters:

	
	swath_identifier (str [https://docs.python.org/3/library/stdtypes.html#str]) – Swath identifier dependent on acquisition mode.

	ei_tif (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to the annotation GeoTIFF layer ‘Ellipsoidal Incident Angle’ of the current product.

	etad (bool [https://docs.python.org/3/library/functions.html#bool]) – Was the ETAD correction applied?

	decimals (int [https://docs.python.org/3/library/functions.html#int], optional) – Number of decimal places to round the calculated rRMSE value to. Default is 2.

	Returns:

	rmse_planar – The calculated rRMSE value rounded to two decimal places or None if a DEM other than Copernicus is used.

	Return type:

	float [https://docs.python.org/3/library/functions.html#float] or None

	
s1ard.metadata.extract.calc_performance_estimates(files, decimals=2)

	Calculates the performance estimates specified in CARD4L NRB 1.6.9 for all noise power images if available.

	Parameters:

	
	files (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – List of paths pointing to the noise power images the estimates should be calculated for.

	decimals (int [https://docs.python.org/3/library/functions.html#int], optional) – Number of decimal places to round the calculated values to. Default is 2.

	Returns:

	out – Dictionary containing the calculated estimates for each available polarization.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
s1ard.metadata.extract.calc_pslr_islr(annotation_dict, decimals=2)

	Extracts all values for Peak Side Lobe Ratio (PSLR) and Integrated Side Lobe Ratio (ISLR) from the annotation
metadata of a scene and calculates the mean value for all swaths.

	Parameters:

	
	annotation_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of annotation files in the form: {‘swath ID’:lxml.etree._Element object}

	decimals (int [https://docs.python.org/3/library/functions.html#int], optional) – Number of decimal places to round the calculated values to. Default is 2.

	Returns:

	a tuple with the following values:

	pslr: Mean PSLR value for all swaths of the scene.

	islr: Mean ISLR value for all swaths of the scene.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple][float [https://docs.python.org/3/library/functions.html#float]]

	
s1ard.metadata.extract.calc_wm_ref_stats(wm_ref_files, epsg, bounds, resolution=915)

	Calculates the mean wind model reference speed and direction for the wind model annotation layer.

	Parameters:

	
	wm_ref_files (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – List of paths pointing to the wind model reference files.

	epsg (int [https://docs.python.org/3/library/functions.html#int]) – The EPSG code of the current MGRS tile.

	bounds (list [https://docs.python.org/3/library/stdtypes.html#list][float [https://docs.python.org/3/library/functions.html#float]]) – The bounds of the current MGRS tile.

	resolution (int [https://docs.python.org/3/library/functions.html#int], optional) – The resolution of the wind model reference files in meters. Default is 915.

	Returns:

	a tuple with the following values in the following order:

	Mean wind model reference speed.

	Mean wind model reference direction.

	Return type:

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple][float [https://docs.python.org/3/library/functions.html#float]]

	
s1ard.metadata.extract.copy_src_meta(ard_dir, src_ids)

	Copies the original metadata of the source scenes to the ARD product
directory.

	Parameters:

	
	ard_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – A path pointing to the current ARD product directory.

	src_ids (list [https://docs.python.org/3/library/stdtypes.html#list][pyroSAR.drivers.ID [https://pyrosar.readthedocs.io/en/latest/api/drivers.html#pyroSAR.drivers.ID]]) – List of ID [https://pyrosar.readthedocs.io/en/latest/api/drivers.html#pyroSAR.drivers.ID] objects of all source scenes that overlap with the current MGRS tile.

	Return type:

	None

	
s1ard.metadata.extract.find_in_annotation(annotation_dict, pattern, single=False, out_type='str')

	Search for a pattern in all XML annotation files provided and return a dictionary of results.

	Parameters:

	
	annotation_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dict of annotation files in the form: {‘swath ID’: lxml.etree._Element object}

	pattern (str [https://docs.python.org/3/library/stdtypes.html#str]) – The pattern to search for in each annotation file.

	single (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the results found in each annotation file are expected to be the same and therefore only a single
value will be returned instead of a dict. If the results differ, an error is raised. Default is False.

	out_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Output type to convert the results to. Can be one of the following:

	’str’ (default)

	’float’

	’int’

	Returns:

	out – A dictionary of the results containing a list for each of the annotation files. E.g.,
{‘swath ID’: list[str or float or int]}

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
s1ard.metadata.extract.geometry_from_vec(vectorobject)

	Get geometry information for usage in STAC and XML metadata from a spatialist.vector.Vector [https://spatialist.readthedocs.io/en/latest/spatialist.html#spatialist.vector.Vector] object.

	Parameters:

	vectorobject (spatialist.vector.Vector [https://spatialist.readthedocs.io/en/latest/spatialist.html#spatialist.vector.Vector]) – The vector object to extract geometry information from.

	Returns:

	out – A dictionary containing the geometry information extracted from the vector object.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
s1ard.metadata.extract.get_header_size(tif)

	Gets the header size of a GeoTIFF file in bytes.
The code used in this function and its helper function _get_block_offset were extracted from the following
source:

https://github.com/OSGeo/gdal/blob/master/swig/python/gdal-utils/osgeo_utils/samples/validate_cloud_optimized_geotiff.py

Copyright (c) 2017, Even Rouault

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the “Software”),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

	Parameters:

	tif (str [https://docs.python.org/3/library/stdtypes.html#str]) – A path to a GeoTIFF file of the currently processed ARD product.

	Returns:

	header_size – The size of all IFD headers of the GeoTIFF file in bytes.

	Return type:

	int [https://docs.python.org/3/library/functions.html#int]

	
s1ard.metadata.extract.get_prod_meta(product_id, tif, src_ids, sar_dir)

	Returns a metadata dictionary, which is generated from the name of a product scene using a regular expression
pattern and from a measurement GeoTIFF file of the same product scene using the Raster [https://spatialist.readthedocs.io/en/latest/spatialist.html#spatialist.raster.Raster]
class.

	Parameters:

	
	product_id (str [https://docs.python.org/3/library/stdtypes.html#str]) – The top-level product folder name.

	tif (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to a measurement GeoTIFF file of the product scene.

	src_ids (list [https://docs.python.org/3/library/stdtypes.html#list][pyroSAR.drivers.ID [https://pyrosar.readthedocs.io/en/latest/api/drivers.html#pyroSAR.drivers.ID]]) – List of ID [https://pyrosar.readthedocs.io/en/latest/api/drivers.html#pyroSAR.drivers.ID] objects of all source SLC scenes that overlap with the current MGRS tile.

	sar_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – A path pointing to the processed SAR datasets of the product.

	Returns:

	A dictionary containing metadata for the product scene.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
s1ard.metadata.extract.get_src_meta(sid)

	Retrieve the manifest and annotation XML data of a scene as a dictionary using an pyroSAR.drivers.ID [https://pyrosar.readthedocs.io/en/latest/api/drivers.html#pyroSAR.drivers.ID]
object.

	Parameters:

	sid (pyroSAR.drivers.ID [https://pyrosar.readthedocs.io/en/latest/api/drivers.html#pyroSAR.drivers.ID]) – A pyroSAR ID [https://pyrosar.readthedocs.io/en/latest/api/drivers.html#pyroSAR.drivers.ID] object generated with e.g. pyroSAR.drivers.identify() [https://pyrosar.readthedocs.io/en/latest/api/drivers.html#pyroSAR.drivers.identify].

	Returns:

	A dictionary containing the parsed etree.ElementTree objects for the manifest and annotation XML files.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
s1ard.metadata.extract.meta_dict(config, target, src_ids, sar_dir, proc_time, start, stop, compression, product_type, wm_ref_files=None)

	Creates a dictionary containing metadata for a product scene, as well as its source scenes. The dictionary can then
be utilized by parse() and parse() to generate OGC XML and
STAC JSON metadata files, respectively.

	Parameters:

	
	config (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary of the parsed config parameters for the current process.

	target (str [https://docs.python.org/3/library/stdtypes.html#str]) – A path pointing to the current ARD product directory.

	src_ids (list [https://docs.python.org/3/library/stdtypes.html#list][pyroSAR.drivers.ID [https://pyrosar.readthedocs.io/en/latest/api/drivers.html#pyroSAR.drivers.ID]]) – List of ID [https://pyrosar.readthedocs.io/en/latest/api/drivers.html#pyroSAR.drivers.ID] objects of all source scenes that overlap with the current MGRS tile.

	sar_dir (str [https://docs.python.org/3/library/stdtypes.html#str]) – The SAR processing output directory.

	proc_time (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]) – The processing time object used to generate the unique product identifier.

	start (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]) – The product start time.

	stop (datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime]) – The product stop time.

	compression (str [https://docs.python.org/3/library/stdtypes.html#str]) – The compression type applied to raster files of the product.

	product_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The type of ARD product that is being created. Either ‘NRB’ or ‘ORB’.

	wm_ref_files (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]], optional) – A list of paths pointing to wind model reference files. Default is None.

	Returns:

	meta – A dictionary containing a collection of metadata for product as well as source scenes.

	Return type:

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

XML

	parse

	Wrapper for source_xml() and product_xml().

	product_xml

	Function to generate product-level metadata for an ARD product in OGC 10-157r4 compliant XML format.

	source_xml

	Function to generate source-level metadata for an ARD product in OGC 10-157r4 compliant XML format.

	
s1ard.metadata.xml.parse(meta, target, assets, exist_ok=False)

	Wrapper for source_xml() and product_xml().

	Parameters:

	
	meta (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Metadata dictionary generated with meta_dict().

	target (str [https://docs.python.org/3/library/stdtypes.html#str]) – A path pointing to the root directory of a product scene.

	assets (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – List of paths to all GeoTIFF and VRT assets of the currently processed ARD product.

	exist_ok (bool [https://docs.python.org/3/library/functions.html#bool]) – Do not create files if they already exist?

	
s1ard.metadata.xml.product_xml(meta, target, assets, nsmap, ard_ns, exist_ok=False)

	Function to generate product-level metadata for an ARD product in OGC 10-157r4 compliant XML format.

	Parameters:

	
	meta (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Metadata dictionary generated with meta_dict()

	target (str [https://docs.python.org/3/library/stdtypes.html#str]) – A path pointing to the root directory of a product scene.

	assets (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – List of paths to all GeoTIFF and VRT assets of the currently processed ARD product.

	nsmap (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary listing abbreviation (key) and URI (value) of all necessary XML namespaces.

	ard_ns (str [https://docs.python.org/3/library/stdtypes.html#str]) – Abbreviation of the ARD namespace. E.g., s1-nrb for the NRB ARD product.

	exist_ok (bool [https://docs.python.org/3/library/functions.html#bool]) – Do not create files if they already exist?

	
s1ard.metadata.xml.source_xml(meta, target, nsmap, ard_ns, exist_ok=False)

	Function to generate source-level metadata for an ARD product in OGC 10-157r4 compliant XML format.

	Parameters:

	
	meta (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Metadata dictionary generated with meta_dict()

	target (str [https://docs.python.org/3/library/stdtypes.html#str]) – A path pointing to the root directory of a product scene.

	nsmap (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary listing abbreviation (key) and URI (value) of all necessary XML namespaces.

	ard_ns (str [https://docs.python.org/3/library/stdtypes.html#str]) – Abbreviation of the ARD namespace. E.g., s1-nrb for the NRB ARD product.

	exist_ok (bool [https://docs.python.org/3/library/functions.html#bool]) – Do not create files if they already exist?

STAC

	parse

	Wrapper for source_json() and product_json().

	product_json

	Function to generate product-level metadata for an ARD product in STAC compliant JSON format.

	source_json

	Function to generate source-level metadata for an ARD product in STAC compliant JSON format.

	make_catalog

	For a given directory of Sentinel-1 ARD products, this function will create a high-level STAC Catalog [https://pystac.readthedocs.io/en/stable/api/pystac.html#pystac.Catalog] object serving as the STAC endpoint and lower-level STAC Collection [https://pystac.readthedocs.io/en/stable/api/pystac.html#pystac.Collection] objects for each subdirectory corresponding to a unique MGRS tile ID.

	
s1ard.metadata.stac.make_catalog(directory, product_type, recursive=True, silent=False)

	For a given directory of Sentinel-1 ARD products, this function will create a high-level STAC
Catalog [https://pystac.readthedocs.io/en/stable/api/pystac.html#pystac.Catalog] object serving as the STAC endpoint and lower-level STAC
Collection [https://pystac.readthedocs.io/en/stable/api/pystac.html#pystac.Collection] objects for each subdirectory corresponding to a unique MGRS tile ID.

WARNING: The directory content will be reorganized into subdirectories based on the ARD type and unique MGRS tile
IDs if this is not yet the case.

	Parameters:

	
	directory (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path to a directory that contains ARD products.

	product_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of ARD products. Options: ‘NRB’ or ‘ORB’.

	recursive (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Search directory recursively? Default is True.

	silent (bool [https://docs.python.org/3/library/functions.html#bool], optional) – Should the output during directory reorganization be suppressed? Default is False.

	Returns:

	nrb_catalog – STAC Catalog object

	Return type:

	pystac.catalog.Catalog [https://pystac.readthedocs.io/en/stable/api/pystac.html#pystac.Catalog]

Notes

The returned STAC Catalog object contains Item asset hrefs that are absolute, whereas the actual on-disk files
contain relative asset hrefs corresponding to the self-contained Catalog-Type. The returned in-memory STAC Catalog
object deviates in this regard to ensure compatibility with the stackstac library:
https://github.com/gjoseph92/stackstac/issues/20

	
s1ard.metadata.stac.parse(meta, target, assets, exist_ok=False)

	Wrapper for source_json() and product_json().

	Parameters:

	
	meta (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Metadata dictionary generated with meta_dict()

	target (str [https://docs.python.org/3/library/stdtypes.html#str]) – A path pointing to the root directory of a product scene.

	assets (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – List of paths to all GeoTIFF and VRT assets of the currently processed ARD product.

	exist_ok (bool [https://docs.python.org/3/library/functions.html#bool]) – Do not create files if they already exist?

	
s1ard.metadata.stac.product_json(meta, target, assets, exist_ok=False)

	Function to generate product-level metadata for an ARD product in STAC compliant JSON format.

	Parameters:

	
	meta (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Metadata dictionary generated with meta_dict().

	target (str [https://docs.python.org/3/library/stdtypes.html#str]) – A path pointing to the root directory of a product scene.

	assets (list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]) – List of paths to all GeoTIFF and VRT assets of the currently processed ARD product.

	exist_ok (bool [https://docs.python.org/3/library/functions.html#bool]) – Do not create files if they already exist?

	
s1ard.metadata.stac.source_json(meta, target, exist_ok=False)

	Function to generate source-level metadata for an ARD product in STAC compliant JSON format.

	Parameters:

	
	meta (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Metadata dictionary generated with meta_dict().

	target (str [https://docs.python.org/3/library/stdtypes.html#str]) – A path pointing to the root directory of a product scene.

	exist_ok (bool [https://docs.python.org/3/library/functions.html#bool]) – Do not create files if they already exist?

 Examples

Examples

	Exploring s1ard data cubes

 Exploring s1ard data cubes

Exploring s1ard data cubes

Introduction

This example notebook will give a short demonstration of how S1-NRB products can be explored as on-the-fly data cubes with little effort by utilizing the STAC metadata provided with each product. It is not intended to demonstrate how to process the S1-NRB products in the first place. For this information please refer to the usage instructions [https://s1-nrb.readthedocs.io/en/latest/general/usage.html].

A lightning talk related to this topic has been given during the Cloud-Native Geospatial Outreach Event 2022 [https://medium.com/radiant-earth-insights/cloud-native-geospatial-outreach-2022-recap-and-videos-2a0e80085db7], which can be found here [https://www.youtube.com/watch?v=NOwjDvB9-0k].

Follow this link [https://nbviewer.org/github/SAR-ARD/s1ard/blob/main/docs/examples/nrb_cube.ipynb] for a better visualization of this notebook!

Sentinel-1 Normalised Radar Backscatter Sentinel-1 Normalised Radar Backscatter (S1-NRB) is a newly developed Analysis Ready Data (ARD) product for the European Space Agency that offers high-quality, radiometrically terrain corrected (RTC) Synthetic Aperture Radar (SAR) backscatter and is designed to be compliant with the CEOS ARD for Land (CARD4L) NRB specification [https://ceos.org/ard/files/PFS/NRB/v5.5/CARD4L-PFS_NRB_v5.5.pdf]. You can find more detailed information about the S1-NRB
product here [https://sentinel.esa.int/web/sentinel/sentinel-1-ard-normalised-radar-backscatter-nrb-product].

SpatioTemporal Asset Catalog (STAC) All S1-NRB products include metadata in JSON format compliant with the SpatioTemporal Asset Catalog (STAC) [https://stacspec.org/] specification. STAC uses several sub-specifications (Item [https://github.com/radiantearth/stac-spec/blob/master/item-spec/item-spec.md], Collection [https://github.com/radiantearth/stac-spec/blob/master/collection-spec/collection-spec.md] &
Catalog [https://github.com/radiantearth/stac-spec/blob/master/catalog-spec/catalog-spec.md]) to create a hierarchical structure that enables efficient querying and access of large volumes of geospatial data.

Getting started

After following the installation instructions [https://s1-nrb.readthedocs.io/en/latest/general/installation.html] you need to install an additional package into the activated conda environment:

conda activate s1ard
conda install stackstac

Let’s assume you have a collection of S1-NRB scenes located on your local disk, a fileserver or somewhere in the cloud. As mentioned in the Introduction, each S1-NRB scene includes metadata as a STAC Item, describing the scene’s temporal, spatial and product specific properties.

The only step necessary to get started with analysing your collection of scenes, is the creation of STAC Collection and Catalog files, which connect individual STAC Items and thereby create a hierarchy of STAC objects. s1ard includes the utility function make_catalog [https://s1-nrb.readthedocs.io/en/latest/api.html#s1ard.metadata.stac.make_catalog], which will create these files for you. Please note that make_catalog expects a directory structure based on MGRS tile IDs, which
allows for efficient data querying and access. After user confirmation it will take care of reorganizing your S1-NRB scenes if this directory structure doesn’t exist yet.

[3]:

import numpy as np
import stackstac
from s1ard.metadata.stac import make_catalog

nrb_catalog = make_catalog(directory='./NRB_thuringia', product_type='NRB', silent=True)

The STAC Catalog can then be used with libraries such as stackstac [https://github.com/gjoseph92/stackstac], which “turns a STAC Collection into a lazy xarray.DataArray, backed by dask”.

The term lazy describes a method of execution that only computes results when actually needed and thereby enables computations on larger-than-memory datasets. xarray [https://xarray.pydata.org/en/stable/index.html] is a Python library for working with labeled multi-dimensional arrays of data, while the Python library dask [https://docs.dask.org/en/latest/] facilitates parallel computing in a flexible way.

Compatibility with odc-stac [https://github.com/opendatacube/odc-stac], a very similar library [https://github.com/opendatacube/odc-stac/issues/54] to stackstac, has also been implemented.

[4]:

aoi = (10.638066, 50.708415, 11.686751, 50.975775)
ds = stackstac.stack(items=nrb_catalog, bounds_latlon=aoi,
 dtype=np.dtype('float32'), chunksize=(-1, 1, 1024, 1024))
ds

As you can see in the output above, the collection of S1-NRB scenes was successfully loaded as an xarray.DataArray. The metadata attributes included in all STAC Items are now available as coordinate arrays (see here [https://docs.xarray.dev/en/stable/user-guide/terminology.html#term-Coordinate] for clarification of Xarray’s terminology) and can be utilized during analysis.

It is now possible to explore and analyse the S1-NRB data cube. The most important tools in this regard are the already mentioned xarray and dask. Both are widely used and a lot of tutorials and videos can be found online, e.g. in the xarray Docs (1 [https://docs.xarray.dev/en/stable/user-guide/index.html], 2 [https://docs.xarray.dev/en/stable/tutorials-and-videos.html]) or the Pangeo Tutorial Gallery [https://gallery.pangeo.io/repos/pangeo-data/pangeo-tutorial-gallery/index.html].

 About

About

	Changelog

	Abbreviations

	References

 Changelog

Changelog

1.6.2 | 2023-11-23

	Update metadata links (#165 [https://github.com/SAR-ARD/s1ard/pull/165])

	Fix missing datamask layers in metadata (#164 [https://github.com/SAR-ARD/s1ard/pull/164])

	Add wind normalisation metadata fields (#166 [https://github.com/SAR-ARD/s1ard/pull/166])

	documentation updates (#167 [https://github.com/SAR-ARD/s1ard/pull/167])

	[metadata.xml.product_xml] add geo acc. reference only if performed (#168 [https://github.com/SAR-ARD/s1ard/pull/168])

	require pyroSAR>=0.23.0 (#169 [https://github.com/SAR-ARD/s1ard/pull/169])

Full v1.6.2 Changelog [https://github.com/SAR-ARD/s1ard/compare/v1.6.1...v1.6.2]

1.6.1 | 2023-11-17

	use relative paths in wind normalization VRT (#163 [https://github.com/SAR-ARD/s1ard/pull/163])

Full v1.6.1 Changelog [https://github.com/SAR-ARD/s1ard/compare/v1.6.0...v1.6.1]

1.6.0 | 2023-11-15

	central documentation literature management (#151 [https://github.com/SAR-ARD/s1ard/pull/151])

	Use the official Continuum Docker base image (#152 [https://github.com/SAR-ARD/s1ard/pull/152])

	re-introduce recently lost radiometric terrain correction (#154 [https://github.com/SAR-ARD/s1ard/pull/154])

	strip line breaks from all parameters passed via the command line (#155 [https://github.com/SAR-ARD/s1ard/pull/155])

	increase OCN gap fill distance (#156 [https://github.com/SAR-ARD/s1ard/pull/156])

	data mask modifications (#157 [https://github.com/SAR-ARD/s1ard/pull/157])

	[config] corrected list of allowed modes (#158 [https://github.com/SAR-ARD/s1ard/pull/158])

	search OCN scenes by buffered start and stop time (#160 [https://github.com/SAR-ARD/s1ard/pull/160])

	separate ocean, rivers and lakes into separate data mask bands (#161 [https://github.com/SAR-ARD/s1ard/pull/161])

Full v1.6.0 Changelog [https://github.com/SAR-ARD/s1ard/compare/v1.5.0...v1.6.0]

1.5.0 | 2023-10-12

	Replace gs and sg annotation options with ratio (#116 [https://github.com/SAR-ARD/s1ard/pull/116])

	Metadata/review (#117 [https://github.com/SAR-ARD/s1ard/pull/117])

	Equivalent Number of Looks (#113 [https://github.com/SAR-ARD/s1ard/pull/113])

	[copy_src_meta] fixed bug in reading zip content on Windows (#124 [https://github.com/SAR-ARD/s1ard/pull/124])

	Documentation: Table of abbreviations (#123 [https://github.com/SAR-ARD/s1ard/pull/123])

	fixed bug in GRD buffering of ascending scenes (#126 [https://github.com/SAR-ARD/s1ard/pull/126])

	new annotation layer “range look direction angle” (#103 [https://github.com/SAR-ARD/s1ard/pull/103])

	ENL calculation: Suppress warnings and increase default block_size (#127 [https://github.com/SAR-ARD/s1ard/pull/127])

	Add missing pyproj dependency (#128 [https://github.com/SAR-ARD/s1ard/pull/128])

	Simplified datamask for ORB product (#122 [https://github.com/SAR-ARD/s1ard/pull/122])

	Update .readthedocs.yaml (#129 [https://github.com/SAR-ARD/s1ard/pull/129])

	[nrb.create_vrt] fixed bug in handling default ‘options=None’ (#132 [https://github.com/SAR-ARD/s1ard/pull/132])

	[docs] point to right environment.yaml when installing specific version (#133 [https://github.com/SAR-ARD/s1ard/pull/133])

	Fix missing STAC FileExtension entries (#131 [https://github.com/SAR-ARD/s1ard/pull/131])

	Accommodate ORB product (#121 [https://github.com/SAR-ARD/s1ard/pull/121])

	rename config default annotation IDs gs and sg to ratio (#135 [https://github.com/SAR-ARD/s1ard/pull/135])

	[snap.process] skip GRD buffering if list is empty (#139 [https://github.com/SAR-ARD/s1ard/pull/139])

	Refer to original source metadata in source XML and JSON (#136 [https://github.com/SAR-ARD/s1ard/pull/136])

	wind normalization (#138 [https://github.com/SAR-ARD/s1ard/pull/138])

	Look direction angle improvements (#141 [https://github.com/SAR-ARD/s1ard/pull/141])

	do not look for source metadata files if copying is not user-configured (#142 [https://github.com/SAR-ARD/s1ard/pull/142])

	change EW spacing from 20 to 40 m (#143 [https://github.com/SAR-ARD/s1ard/pull/143])

	XML product metadata improvements (#137 [https://github.com/SAR-ARD/s1ard/pull/137])

	Metadata/review (#140 [https://github.com/SAR-ARD/s1ard/pull/140])

	wind normalization - GDAL options (#144 [https://github.com/SAR-ARD/s1ard/pull/144])

	Require pyroSAR >=0.22.0 and update license year (#145 [https://github.com/SAR-ARD/s1ard/pull/145])

	documentation improvements (#146 [https://github.com/SAR-ARD/s1ard/pull/146])

	STACArchive file path handling (#148 [https://github.com/SAR-ARD/s1ard/pull/148])

	geometry buffering for minimum overlap (#147 [https://github.com/SAR-ARD/s1ard/pull/147])

	apply RTC to sigma0 (#149 [https://github.com/SAR-ARD/s1ard/pull/149])

	config ‘mode’: removed ‘all’, added ‘orb’; renamed module ‘nrb’ to ‘ard’ (#150 [https://github.com/SAR-ARD/s1ard/pull/150])

Full v1.5.0 Changelog [https://github.com/SAR-ARD/s1ard/compare/v1.4.0...v1.5.0]

1.4.0 | 2023-07-04

	various bug fixes (#94 [https://github.com/SAR-ARD/s1ard/pull/94])

	datatake gap handling (#95 [https://github.com/SAR-ARD/s1ard/pull/95])

	new configuration parameter ‘datatake’ (#96 [https://github.com/SAR-ARD/s1ard/pull/96])

	increased STAC access robustness (#97 [https://github.com/SAR-ARD/s1ard/pull/97])

	STACArchive bug fixes (#98 [https://github.com/SAR-ARD/s1ard/pull/98])

	Optional datatake parameter (#99 [https://github.com/SAR-ARD/s1ard/pull/99])

	bug fixes (#100 [https://github.com/SAR-ARD/s1ard/pull/100])

	Bug fix to allow annotation = None (#102 [https://github.com/SAR-ARD/s1ard/pull/102])

	Save original source metadata (#104 [https://github.com/SAR-ARD/s1ard/pull/104])

	do not continue on error (#105 [https://github.com/SAR-ARD/s1ard/pull/105])

	Always use ESA border noise removal (#106 [https://github.com/SAR-ARD/s1ard/pull/106])

	[nrb] remove dataset if mask is nodata-only (#108 [https://github.com/SAR-ARD/s1ard/pull/108])

	Bug fix: Save original source metadata (#109 [https://github.com/SAR-ARD/s1ard/pull/109])

	New metadata config parameters (#110 [https://github.com/SAR-ARD/s1ard/pull/110])

	support for scenes acquired in NRT Slicing mode (#112 [https://github.com/SAR-ARD/s1ard/pull/112])

Full v1.4.0 Changelog [https://github.com/SAR-ARD/s1ard/compare/v1.3.0...v1.4.0]

1.3.0 | 2023-05-24

	SNAP RTC: increase DEM oversampling by a factor of two (#78 [https://github.com/SAR-ARD/s1ard/pull/78])

	nrb.format: do not hardcode src_nodata and read it from the data instead (#79 [https://github.com/SAR-ARD/s1ard/pull/79])

	enable configuration via command line arguments (#80 [https://github.com/SAR-ARD/s1ard/pull/80])

	improved date parsing (#81 [https://github.com/SAR-ARD/s1ard/pull/81])

	scene search via STAC (#82 [https://github.com/SAR-ARD/s1ard/pull/82])

	enhanced time filtering (#84 [https://github.com/SAR-ARD/s1ard/pull/84])

	general processor improvements (#85 [https://github.com/SAR-ARD/s1ard/pull/85])

Full v1.3.0 Changelog [https://github.com/SAR-ARD/s1ard/compare/v1.2.0...v1.3.0]

1.2.0 | 2022-12-29

	improved geometry handling (#71 [https://github.com/SAR-ARD/s1ard/pull/71])

	DEM handling improvements (#72 [https://github.com/SAR-ARD/s1ard/pull/72])

	GRD buffering by (#73 [https://github.com/SAR-ARD/s1ard/pull/73])

	add DEM as additional output layer (#70 [https://github.com/SAR-ARD/s1ard/pull/70])

	sigma0 processing and annotation layer configuration (#74 [https://github.com/SAR-ARD/s1ard/pull/74])

Full v1.2.0 Changelog [https://github.com/SAR-ARD/s1ard/compare/v1.1.0...v1.2.0]

1.1.0 | 2022-09-29

	documentation improvements (#60 [https://github.com/SAR-ARD/s1ard/pull/60])

	installation update (#61 [https://github.com/SAR-ARD/s1ard/pull/61])

	Process restructuring (#63 [https://github.com/SAR-ARD/s1ard/pull/63])

	minor structural changes and bug fixes (#65 [https://github.com/SAR-ARD/s1ard/pull/65])

	documentation update reflecting the recent process restructuring (#66 [https://github.com/SAR-ARD/s1ard/pull/66])

	renamed processing mode ‘snap’ to ‘rtc’ (#67 [https://github.com/SAR-ARD/s1ard/pull/67])

Full v1.1.0 Changelog [https://github.com/SAR-ARD/s1ard/compare/v1.0.2...v1.1.0]

1.0.2 | 2022-08-24

	Fix error in handling of temporary VRTs (#50 [https://github.com/SAR-ARD/s1ard/pull/50])

	Adjustments to VRT log scaling (#52 [https://github.com/SAR-ARD/s1ard/pull/52])

	[metadata] read nodata values directly from files (instead of hard-coding them) (#53 [https://github.com/SAR-ARD/s1ard/pull/53])

	use type identifier in scene-specific DEM file names (#55 [https://github.com/SAR-ARD/s1ard/pull/55])

	Add VRT assets to STAC files (#56 [https://github.com/SAR-ARD/s1ard/pull/56])

	Fix and improve metadata geometry handling (#57 [https://github.com/SAR-ARD/s1ard/pull/57])

	SNAP 9 compatibility (#58 [https://github.com/SAR-ARD/s1ard/pull/58])

Full v1.0.2 Changelog [https://github.com/SAR-ARD/s1ard/compare/v1.0.1...v1.0.2]

1.0.1 | 2022-07-03

	dem handling improvements (#45 [https://github.com/SAR-ARD/s1ard/pull/45])

Full v1.0.1 Changelog [https://github.com/SAR-ARD/s1ard/compare/v1.0.0...v1.0.1]

1.0.0 | 2022-06-23

	Dockerfile to build s1ard image (#31 [https://github.com/SAR-ARD/s1ard/pull/31])

	adjustments to nodata value (#28 [https://github.com/SAR-ARD/s1ard/pull/28])

	renamed XML tag ‘nrb’ to ‘s1-nrb’ (#36 [https://github.com/SAR-ARD/s1ard/pull/36])

	Metadata & Config Improvements (#30 [https://github.com/SAR-ARD/s1ard/pull/30])

	Geolocation accuracy (#40 [https://github.com/SAR-ARD/s1ard/pull/40])

	various bug fixes and documentation improvements

Full v1.0.0 Changelog [https://github.com/SAR-ARD/s1ard/compare/v0.4.2...v1.0.0]

0.4.2 | 2022-06-16

	Update documentation (#27 [https://github.com/SAR-ARD/s1ard/pull/27])

	find unpacked .SAFE scenes in scene_dir (instead of just .zip) (aea53a5 [https://github.com/SAR-ARD/s1ard/commit/aea53a57bc5fa1418fea4f46f69b41b7332909b1])

Full v0.4.2 Changelog [https://github.com/SAR-ARD/s1ard/compare/v0.4.1...v0.4.2]

0.4.1 | 2022-06-01

	handle ETAD products as zip, tar, and SAFE (#25 [https://github.com/SAR-ARD/s1ard/pull/25])

	set dem download authentication via env. variables (#26 [https://github.com/SAR-ARD/s1ard/pull/26])

	various bug fixes

Full v0.4.1 Changelog [https://github.com/SAR-ARD/s1ard/compare/v0.4.0...v0.4.1]

0.4.0 | 2022-05-30

	outsourced and restructured DEM preparation functionality (#18 [https://github.com/SAR-ARD/s1ard/pull/18])

	outsourced ETAD correction to dedicated module (#19 [https://github.com/SAR-ARD/s1ard/pull/19])

	XML validation & improvements (#17 [https://github.com/SAR-ARD/s1ard/pull/17])

	Restructuring and cleanup (#20 [https://github.com/SAR-ARD/s1ard/pull/20])

	outsourced NRB formatting to dedicated module (#21 [https://github.com/SAR-ARD/s1ard/pull/21])

	extended acquisition mode support (#22 [https://github.com/SAR-ARD/s1ard/pull/22])

	Set up sphinx documentation (#23 [https://github.com/SAR-ARD/s1ard/pull/23])

	AOI scene selection (#24 [https://github.com/SAR-ARD/s1ard/pull/24])

Full v0.4.0 Changelog [https://github.com/SAR-ARD/s1ard/compare/v0.3.0...v0.4.0]

0.3.0 | 2022-03-30

	Updated metadata module (#9 [https://github.com/SAR-ARD/s1ard/pull/9])

	Modified prepare_dem interface (#10 [https://github.com/SAR-ARD/s1ard/pull/10])

	Various improvements (#11 [https://github.com/SAR-ARD/s1ard/pull/11])

	Modified working directory structure (#12 [https://github.com/SAR-ARD/s1ard/pull/12])

	Updated ancillary.py (#13 [https://github.com/SAR-ARD/s1ard/pull/13])

	Added ETAD correction (#14 [https://github.com/SAR-ARD/s1ard/pull/14])

	Improved RGB composite (#15 [https://github.com/SAR-ARD/s1ard/pull/15])

	Store DEM/WBM tiles in UTM zones different to the native MGRS zone (#16 [https://github.com/SAR-ARD/s1ard/pull/16])

Full v0.3.0 Changelog [https://github.com/SAR-ARD/s1ard/compare/v0.2.0...v0.3.0]

0.2.0 | 2022-03-03

Full v0.2.0 Changelog [https://github.com/SAR-ARD/s1ard/compare/v0.1.0...v0.2.0]

 Abbreviations

Abbreviations

	Abbreviation

	Meaning

	AOI

	Area Of Interest

	ARD

	Analysis Ready Data

	ASF

	Alaska Satellite Facility

	CARD

	CEOS Analysis Ready Data

	CARD4L

	CEOS Analysis Ready Data for Land

	CEOS

	Committee on Earth Observation Satellites

	COG

	Cloud Optimized GeoTIFF

	CRS

	Coordinate Reference System

	DEM

	Digital Elevation Model

	DSM

	Digital Surface Model

	EGM

	Earth Gravitational Model

	EPSG

	European Petroleum Survey Group Geodesy

	ESA

	European Space Agency

	ETAD

	Extended Timing Annotation Dataset

	EW

	Extra Wide Swath Mode

	GETASSE

	Global Earth Topography And Sea Surface Elevation

	GRD

	Ground Range Detected

	ISLR

	Integrated Side Lobe Ratio

	IW

	Interferometric Wide Swath Mode

	KML

	Keyhole Markup Language

	MGRS

	Military Grid Reference System

	NESZ

	Noise Equivalent Sigma Zero

	NRB

	Normalised Radar Backscatter

	NRT

	Near Real Time

	OGC

	Open Geospatial Consortium

	ORB

	Ocean Radar Backscatter

	OSV

	Orbit State Vector

	PSLR

	Peak Side Lobe Ratio

	RTC

	Radiometric Terrain Correction

	SAR

	Synthetic Aperture Radar

	SLC

	Single Look Complex

	SM

	Stripmap Mode

	SNAP

	Sentinel Application Platform

	STAC

	SpatioTemporal Asset Catalog

	UTM

	Universal Transverse Mercator

	VRT

	Virtual Raster Tile

	WBM

	Water Body Mask

	WGS84

	World Geodetic System 1984

	WKT

	Well Known Text

	XML

	Extensible Markup Language

 References

References

[1]
Airbus. Copernicus DEM Product Handbook. Technical Report 5.0, Airbus, 2022. URL: https://spacedata.copernicus.eu/documents/20123/122407/GEO1988-CopernicusDEM-SPE-002_ProductHandbook_I5.0+%281%29.pdf/706ee17d-2cce-f1fa-a73e-1686d28f09dd?t=1679657087883.

[2]
S.N. Anfinsen, A.P. Doulgeris, and T. Eltoft. Estimation of the Equivalent Number of Looks in Polarimetric Synthetic Aperture Radar Imagery. IEEE Transactions on Geoscience and Remote Sensing, 47(11):3795–3809, 2009. doi:10.1109/TGRS.2009.2019269 [https://doi.org/10.1109/TGRS.2009.2019269].

[3]
CEOS. Analysis Ready Data for Land: Normalized Radar Backscatter. Technical Report 5.5, CEOS, 2021. URL: https://ceos.org/ard/files/PFS/NRB/v5.5/CARD4L-PFS_NRB_v5.5.pdf.

[4]
CLS. Sentinel-1 Product Definition. Technical Report 2.7, CLS, 2016. URL: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar/document-library/-/asset_publisher/1dO7RF5fJMbd/content/sentinel-1-product-definition.

 Indices and tables

Indices and tables

	Index

	Module Index

	Search Page

 Python Module Index

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 s1ard	

 	
 	
 s1ard.ancillary	

 	
 	
 s1ard.ard	

 	
 	
 s1ard.config	

 	
 	
 s1ard.dem	

 	
 	
 s1ard.etad	

 	
 	
 s1ard.metadata.extract	

 	
 	
 s1ard.metadata.stac	

 	
 	
 s1ard.metadata.xml	

 	
 	
 s1ard.ocn	

 	
 	
 s1ard.processor	

 	
 	
 s1ard.search	

 	
 	
 s1ard.snap	

 	
 	
 s1ard.tile_extraction	

 Index

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | V
 | W

A

 	
 	aoi_from_scene() (in module s1ard.tile_extraction)

 	aoi_from_tile() (in module s1ard.tile_extraction)

 	ASF (class in s1ard.search)

 	
 	asf_select() (in module s1ard.search)

 	ASFArchive (class in s1ard.search)

 	authenticate() (in module s1ard.dem)

B

 	
 	buffer_min_overlap() (in module s1ard.ancillary)

 	
 	buffer_time() (in module s1ard.ancillary)

C

 	
 	calc_enl() (in module s1ard.metadata.extract)

 	calc_geolocation_accuracy() (in module s1ard.metadata.extract)

 	calc_performance_estimates() (in module s1ard.metadata.extract)

 	calc_product_start_stop() (in module s1ard.ard)

 	calc_pslr_islr() (in module s1ard.metadata.extract)

 	calc_wm_ref_stats() (in module s1ard.metadata.extract)

 	check_acquisition_completeness() (in module s1ard.search)

 	check_scene_consistency() (in module s1ard.ancillary)

 	
 	check_spacing() (in module s1ard.ancillary)

 	close() (s1ard.search.STACArchive method)

 	collect_neighbors() (in module s1ard.search)

 	copy_src_meta() (in module s1ard.metadata.extract)

 	create_acq_id_image() (in module s1ard.ard)

 	create_data_mask() (in module s1ard.ard)

 	create_rgb_vrt() (in module s1ard.ard)

 	create_vrt() (in module s1ard.ard)

D

 	
 	description2dict() (in module s1ard.tile_extraction)

E

 	
 	extract() (in module s1ard.ocn)

F

 	
 	find_datasets() (in module s1ard.snap)

 	
 	find_in_annotation() (in module s1ard.metadata.extract)

 	format() (in module s1ard.ard)

G

 	
 	gapfill() (in module s1ard.ocn)

 	gdal_conf() (in module s1ard.config)

 	generate_unique_id() (in module s1ard.ancillary)

 	geo() (in module s1ard.snap)

 	geometry_from_vec() (in module s1ard.metadata.extract)

 	get_config() (in module s1ard.config)

 	get_datasets() (in module s1ard.ard)

 	get_header_size() (in module s1ard.metadata.extract)

 	
 	get_keys() (in module s1ard.config)

 	get_max_ext() (in module s1ard.ancillary)

 	get_metadata() (in module s1ard.snap)

 	get_prod_meta() (in module s1ard.metadata.extract)

 	get_src_meta() (in module s1ard.metadata.extract)

 	grd_buffer() (in module s1ard.snap)

 	group_by_time() (in module s1ard.ancillary)

 	gsr() (in module s1ard.snap)

L

 	
 	log() (in module s1ard.ancillary)

 	
 	look_direction() (in module s1ard.snap)

M

 	
 	main() (in module s1ard.processor)

 	make_catalog() (in module s1ard.metadata.stac)

 	meta_dict() (in module s1ard.metadata.extract)

 	mli() (in module s1ard.snap)

 	
 module

 	s1ard.ancillary

 	s1ard.ard

 	s1ard.config

 	s1ard.dem

 	s1ard.etad

 	s1ard.metadata.extract

 	s1ard.metadata.stac

 	s1ard.metadata.xml

 	s1ard.ocn

 	s1ard.processor

 	s1ard.search

 	s1ard.snap

 	s1ard.tile_extraction

 	
 	mosaic() (in module s1ard.dem)

N

 	
 	nrt_slice_num() (in module s1ard.snap)

P

 	
 	parse() (in module s1ard.metadata.stac)

 	(in module s1ard.metadata.xml)

 	postprocess() (in module s1ard.snap)

 	pre() (in module s1ard.snap)

 	
 	prepare() (in module s1ard.dem)

 	process() (in module s1ard.etad)

 	(in module s1ard.snap)

 	product_json() (in module s1ard.metadata.stac)

 	product_xml() (in module s1ard.metadata.xml)

R

 	
 	rtc() (in module s1ard.snap)

S

 	
 	
 s1ard.ancillary

 	module

 	
 s1ard.ard

 	module

 	
 s1ard.config

 	module

 	
 s1ard.dem

 	module

 	
 s1ard.etad

 	module

 	
 s1ard.metadata.extract

 	module

 	
 s1ard.metadata.stac

 	module

 	
 s1ard.metadata.xml

 	module

 	
 s1ard.ocn

 	module

 	
 	
 s1ard.processor

 	module

 	
 s1ard.search

 	module

 	
 s1ard.snap

 	module

 	
 s1ard.tile_extraction

 	module

 	scanMetadata() (s1ard.search.ASF method)

 	scene_select() (in module s1ard.search)

 	select() (s1ard.search.ASFArchive static method)

 	(s1ard.search.STACArchive method)

 	set_logging() (in module s1ard.ancillary)

 	sgr() (in module s1ard.snap)

 	snap_conf() (in module s1ard.config)

 	source_json() (in module s1ard.metadata.stac)

 	source_xml() (in module s1ard.metadata.xml)

 	STACArchive (class in s1ard.search)

T

 	
 	tile_from_aoi() (in module s1ard.tile_extraction)

 	
 	to_mgrs() (in module s1ard.dem)

V

 	
 	vrt_add_overviews() (in module s1ard.ancillary)

W

 	
 	wind_normalization() (in module s1ard.ard)

_static/minus.png

_static/file.png

_static/plus.png

_images/enl_grd_comparison_scatter.png
ENL (GRDH)

5.0

ENL comparison for selected AOIs

Mean (NRB-SLC): 4.59
Mean (GRDH): 4.81

4.2 4.4 4.6 4.8
ENL (NRB-SLC)

5.0

_images/geometry.png

_images/enl_example_tile.png
m VH backscatter (NRB-SLC, sigma0); MGRS tile 33TUF

~

=
I
g
3
5
g
H
H
S
2
H
5
T
2
s
z
&

_images/enl_grd_comparison_aois.png

nav.xhtml

 Table of Contents

 		
 Welcome to the s1ard documentation!

 		
 General Topics

 		
 Installation

 		
 SNAP

 		
 s1ard

 		
 Docker

 		
 Usage

 		
 Configuration

 		
 Command Line Interface

 		
 ARD Production

 		
 MGRS Gridding

 		
 Scene Management

 		
 DEM Handling

 		
 OSV Handling

 		
 SNAP Processing

 		
 ARD Formatting

 		
 Scene Search

 		
 Intro

 		
 Search configuration with config.ini

 		
 Search with s1ard.search

 		
 STAC search

 		
 Basic scene search

 		
 Folder Structure

 		
 Geolocation Accuracy

 		
 Limitations

 		
 Development Status

 		
 Equivalent Number of Looks (ENL)

 		
 Calculate ENL per image

 		
 Comparison between GRDH and NRB

 		
 API Documentation

 		
 Configuration

 		
 gdal_conf()

 		
 get_config()

 		
 get_keys()

 		
 snap_conf()

 		
 Processing

 		
 main()

 		
 SNAP

 		
 ARD

 		
 ETAD

 		
 DEM

 		
 OCN

 		
 Tile Extraction

 		
 aoi_from_scene()

 		
 aoi_from_tile()

 		
 description2dict()

 		
 tile_from_aoi()

 		
 Ancillary Functions

 		
 buffer_min_overlap()

 		
 buffer_time()

 		
 check_scene_consistency()

 		
 check_spacing()

 		
 generate_unique_id()

 		
 get_max_ext()

 		
 group_by_time()

 		
 log()

 		
 set_logging()

 		
 vrt_add_overviews()

 		
 Scene Search

 		
 ASF

 		
 ASFArchive

 		
 STACArchive

 		
 asf_select()

 		
 check_acquisition_completeness()

 		
 collect_neighbors()

 		
 scene_select()

 		
 Metadata

 		
 Extraction

 		
 XML

 		
 STAC

 		
 Examples

 		
 Exploring s1ard data cubes

 		
 Introduction

 		
 Getting started

 		
 About

 		
 Changelog

 		
 1.6.2 | 2023-11-23

 		
 1.6.1 | 2023-11-17

 		
 1.6.0 | 2023-11-15

 		
 1.5.0 | 2023-10-12

 		
 1.4.0 | 2023-07-04

 		
 1.3.0 | 2023-05-24

 		
 1.2.0 | 2022-12-29

 		
 1.1.0 | 2022-0